
Fragmentary Gene Sequences Negatively Impact Gene Tree and
Species Tree Reconstruction

Erfan Sayyari,1 James B. Whitfield,2 and Siavash Mirarab*,1

1Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA
2Department of Entomology, University of Illinois, Urbana, IL

*Corresponding author: E-mail: smirarab@ucsd.edu.

Associate editor: Rasmus Nielsen

Abstract

Species tree reconstruction from genome-wide data is increasingly being attempted, in most cases using a two-step
approach of first estimating individual gene trees and then summarizing them to obtain a species tree. The accuracy of
this approach, which promises to account for gene tree discordance, depends on the quality of the inferred gene trees. At
the same time, phylogenomic and phylotranscriptomic analyses typically use involved bioinformatics pipelines for data
preparation. Errors and shortcomings resulting from these preprocessing steps may impact the species tree analyses at
the other end of the pipeline. In this article, we first show that the presence of fragmentary data for some species in a
gene alignment, as often seen on real data, can result in substantial deterioration of gene trees, and as a result, the species
tree. We then investigate a simple filtering strategy where individual fragmentary sequences are removed from individual
genes but the rest of the gene is retained. Both in simulations and by reanalyzing a large insect phylotranscriptomic data
set, we show the effectiveness of this simple filtering strategy.
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Introduction
Genome-scale reconstruction of species trees has become the
standard practice in phylogenetics. A typical phylogenomic
analysis starts by sequencing hundreds to thousands of loci
using one of several sequencing strategies (e.g., transcriptom-
ics, targeted amplicon sequencing, hybrid enrichment, etc.).
Data from multiple loci may be then concatenated together
to build a supermatrix, which is then analyzed using standard
phylogenetic methods such as maximum likelihood (ML).
The concatenation approach ignores potential discordance
between gene trees and the species tree (Maddison and
Wiens 1997; Degnan and Rosenberg 2009), and has been
proven statistically inconsistent (Roch and Steel 2014) under
the multispecies coalescent (MSC) model (Pamilo and Nei
1988; Rannala and Yang 2003). An alternative approach, gain-
ing in popularity, is to first estimate a gene tree for each locus
(independently from other loci) and to then combine the
gene trees using a summary method (Edwards 2009).
Several existing summary methods have been proven statis-
tically consistent under the idealized conditions when gene
trees are considered error-free; examples of summary meth-
ods used in practice include ASTRAL (Mirarab et al. 2014a;
Mirarab and Warnow 2015), STAR (Liu et al. 2009), NJst/
ASTRID (Liu and Yu 2011; Vachaspati and Warnow 2015),
and MP-EST (Liu et al. 2010). Although alternative
approaches such as coestimation (Heled and Drummond
2010; Liu 2008) and site-based MSC-based methods (Bryant
et al. 2012; Chifman and Kubatko 2014) exist, these methods
have been less frequently used, perhaps due to their

computational requirements (Bayzid and Warnow 2012;
Zimmermann et al. 2014).

Despite their growing application to real data (Jarvis et al.
2014; Wickett et al. 2014; Prum et al. 2015; Rouse et al. 2016),
the accuracy of summary methods is directly impacted by the
accuracy of the input gene trees (Patel et al. 2013; Roch and
Warnow 2015; Mirarab et al. 2016; Springer and Gatesy 2016;
Xu and Yang 2016). A well-studied source of gene tree esti-
mation error (or uncertainty) is statistical noise due to lack of
phylogenetic signal in short loci (Mirarab et al. 2014c; Xu and
Yang 2016). This has motivated the development of methods
for detecting and removing low signal genes (Salichos and
Rokas 2013; Xu and Yang 2016) or binning of loci to larger
units (Mirarab et al. 2014c; Bayzid et al. 2015). However, other
factors, such as long branch attraction and missing data may
also impact gene tree accuracy (Gatesy and Springer 2014;
Springer and Gatesy 2016), and these have been less thor-
oughly studied (but see Liu et al. 2015; Edwards et al. 2016).

The effect of missing data on the accuracy of single-locus
or supermatrix tree reconstruction has been thoroughly stud-
ied (Philippe et al. 2004; Wiens 2006; Lemmon et al. 2009;
Wiens and Morrill 2011; Simmons 2012). In a summary
method pipeline, missing data come in two forms, as previ-
ously noted by Hosner et al. (2016). A species may be fully
missing from some of the loci; we refer to this scenario (type I
in Hosner et al. [2016]) as missing tips and to the patterns of
presence/absence resulting from it as taxon occupancy.
Alternatively, a species may be present with only partial
data for some of the loci, and we refer to this scenario as
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fragmentary data (type II in Hosner et al. [2016]). These two
forms of missing data may have very different impacts on the
species tree reconstruction. Missing tips may negatively im-
pact the summary method when the species tree is being
inferred from a set of taxonomically incomplete (partial) gene
trees, whereas, fragmentary data may negatively impact the
gene tree inference step (Simmons 2014; Hosner et al. 2016).
Although some studies have examined the impact of missing
tips on summary methods (Xi et al. 2016; Hovmöller et al.
2013; Huang and Knowles 2016), to our knowledge, only
Hosner et al. (2016) have examined impacts of both types
of missing data.

Current high-throughput genomic sequencing methods
vary considerably in the size of the raw sequencing reads
they generate, with there generally being a positive relation-
ship between read length and the error rate in the sequence
(Nagarajan and Pop 2013). Sequence assembly (generating
larger contigs) also varies greatly in efficiency and accuracy,
and most applications, due to computational difficulty, rely
on heuristics (Lemmon and Lemmon 2013). High-quality se-
quence generation and assembly also can be compromised by
challenges with organism size and availability, particularly for
highly diverse taxa of small body size such as insects (Richards
and Murali 2015). Finally, transcriptomic data sets (Misof et al.
2014; Wickett et al. 2014) can have length variation in the
assembled genes because of alternative splicing and the cov-
erage of individual genes may also be affected by expression
levels. Thus, phylogenomic and phylotranscriptomic studies
that strive to provide thorough taxon sampling of diverse
lineages at a reasonable cost often contain fragmentary
data, at least for a subset of the taxa. Since fragmentary
data may negatively impact both the gene alignment
(Nguyen et al. 2015) and gene tree estimation (Lemmon
et al. 2009; Hosner et al. 2016), it is important to study effects
of fragmentary data on the species tree reconstruction and
ways to ameliorate the impacts.

One approach to deal with negative impacts of fragmen-
tation, used in some phylotranscriptomic studies (Wickett
et al. 2014), is to remove each species from those genes where
it is fragmentary. Filtering fragmentary data creates missing
tips and thus presents a trade-off between fragmentation and
taxon occupancy. Because of this trade-off, it is not clear
whether filtering fragmentary data is overall beneficial to
the accuracy; if indeed beneficial, it is not clear what level
of filtering is warranted. Note that a similar trade-off does not
face a concatenation analysis because no gene tree is ever
estimated in such analyses and removing fragmentary
sequences while keeping the respective genes only creates
more missing data (supplementary fig. S1, Supplementary
Material online) without any obvious benefit (except perhaps
in the alignment step).

In this paper, we study effects of fragmentary data on
species and gene tree reconstruction using summary meth-
ods. In line with observations of Hosner et al. (2016), but using
simulations in addition to real data, we demonstrate the neg-
ative impact of fragmentary data. Unlike Hosner et al. (2016)
who deal with fragmentary data by removing genes that show
low phylogenetic signal, we study the strategy of filtering

specific species from individual genes. Given a filtering thresh-
old (e.g., 20%), we remove from each gene alignment any
species that has nongap characters in less than the given
threshold (e.g., 20%). This form of filtering retains the gene
and can arguably result in better utilization of the data be-
cause the nonfragmentary sequences are retained. We test
our proposed filtering method on an insect data set and
corroborate our findings in simulations.

We studied an empirical transcriptomic data set of insects
consisting of 1,478 protein-coding genes of 144 taxa, where
27% of the alignment is gaps (Misof et al. 2014). In 90% of the
genes, there are 115–141 species present, and aligned protein
coding sequences were between 134 and 890 amino acids in
90% of the genes. Insects represent a species-rich lineage of
organisms with generally small body size and can be challeng-
ing for production of high-quality phylogenomic data due to
the difficulty of obtaining sufficient tissue (and thus DNA) for
tiny, rare taxa required for full taxon representation. The in-
sect lineage contains within its history several questions of
broad evolutionary and scientific interest beyond its high
species diversity, such as the evolution of wings and flight,
various forms of metamorphosis, and multiple origins of so-
cial behavior (Misof et al. 2014). Thus, for reconstructing the
history of insects in sufficient detail to draw conclusions
about biological questions of interest, a relatively full taxon
sampling from all insect groups was desired. Transcriptomic
data were used as an achievable way of providing such taxon
representation with comparative genomic data for phylogeny
estimation. Transcriptomic data typically include a large
number of genes, but with the cost of having significant
amounts of fragmentary data. Misof et al. (2014) used
concatenated analysis rather than coalescent-based gene
tree summary methods, presumably because of the highly
variable quality of the individual gene trees. The large size
of this data set and the high amount of fragmentary data
make it especially well-suited for our analyses. In addition, the
insect phylogeny has received considerable attention over the
years, so that we have some prior expectation of relationships
among some lineages, providing a perspective on the accu-
racy of the phylogenetic results.

In simulations, we study impacts of fragmentary data and
the filtering strategy on the accuracy of gene trees and con-
sequently the accuracy of the species trees. Our simulated
data set (see Materials and Methods) simulates gene tree
discordance due to ILS and we use estimated gene trees
(with error); we also randomly inject fragmentation in gene
alignments with patterns that emulate the biological insect
data set. We infer gene trees from the original sequences,
unfiltered alignments, and alignments after filtering fragments
(thresholds: 10–80%) using both RAxML (Stamatakis 2014)
and FastTree2 (Price et al. 2010). We infer species trees using
ASTRAL-II (Mirarab and Warnow 2015) using 50, 200, or
1,000 gene trees.

Results
We start with a simulation study and then analyze the em-
pirical insect data set.

Sayyari et al. . doi:10.1093/molbev/msx261 MBE

2Downloaded from https://academic.oup.com/mbe/article-abstract/doi/10.1093/molbev/msx261/4344836/Fragmentary-Gene-Sequences-Negatively-Impact-Gene
by University of Illinois Music Library user
on 17 October 2017

Deleted Text: )
Deleted Text: ; <xref ref-type=
Deleted Text: While 
Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: -
Deleted Text: -
Deleted Text:  to 
Deleted Text: &percnt; 
Deleted Text:  


Simulation Results
Impact on Gene Trees
Comparing the original data sets that include no fragmenta-
tion (orig-seq) and those with injected fragmentation (no-fil-
tering) shows that the presence of fragmentary data
dramatically increases gene tree error (fig. 1), as measured
by the average normalized Robinson-Foulds distance (NRF)
between true gene trees and the estimated gene trees.
However, progressively applying more aggressive filtering
gradually decreases gene tree error (fig. 1) and the extent of
improvements depends on the filtering threshold (P� 10–5;
ANOVA). With no filtering, the NRF distance is as high as 0.44
for FastTree and 0.39 for RAxML. Filtering fragmentary data
gradually reduces the NRF distance. At the 75% threshold, the
average NRF distance is reduced to 0.30 or 0.28, respectively,
for FastTree and RAxML, which is only slightly lower than the
average NRF error with no fragmentation (0.27 or 0.25,
respectively) but these small differences are still statistically
significant (P� 10–5). Overall, RAxML gene trees are sig-
nificantly more accurate than FastTree trees (P� 10–5).
Note that to compute the NRF distance, true and estimated
trees are restricted to the same set of leaves, normalizing by
the remaining branches; as supplementary figure S2,
Supplementary Material online demonstrates, reductions in
the NRF after filtering cannot be attributed to the shrinking
leaf set due to filtering.

Impact on the Species Tree
Regardless of the number of genes, adding fragmentation to
the data increases the NRF distance between true and esti-
mated species trees (fig. 2a) significantly (P¼ 0.00014 for
RAxML and P� 10–5 for FastTree). For example, with 1,000
genes, the average species tree NRF distance increases from

0.030 with no fragmentation to 0.057 (90% increase) with
fragments and no filtering for FastTree gene trees and from
0.023 to 0.037 (60% increase) for RAxML gene trees.

Filtering fragmentary data has nonmonotonic impacts on
the species tree error (fig. 2a). As the filtering threshold
increases, the average species tree estimation error initially
tends to drop but eventually starts to increase again. The
optimal threshold depends on the number of genes and in
most conditions varies between 25% and 33% (supplemen-
tary table S1, Supplementary Material online). Limiting our-
selves to all thresholds up to 33%, we observe that the
accuracy of the species tree tends to gradually improve as a
result of increased filtering when at least 200 genes are avail-
able; however, improvements are statistically significant only
with 1,000 genes (P¼ 0.00461 and P¼ 0.0417, respectively,
for FastTree and RAxML) and not for 200 (P¼ 0.102, and
P¼ 0.314, for FastTree and RAxML). With 1,000 genes, filter-
ing is never worse than no filtering, even with extremely ag-
gressive filtering. At the 50% threshold, the NRF distance
reduces from 0.037 to 0.028 for RAxML gene trees and
from 0.057 to 0.036 for FastTree trees.

Gene Tree versus Species Tree Error
Reducing gene tree error by increased filtering is only bene-
ficial to the species tree estimation when taxon occupancy is
not dramatically sacrificed (fig. 2b). As we go from no filtering
to filtering up to 33%, the species tree error and gene tree
error both tend to decrease at first. Further increases in the
filtering threshold continue to reduce the gene tree error, but
those reductions don’t always translate to improvements in
species tree error, and in fact, can increase it. This is perhaps
partly because improvements in gene tree error eventually
become small with each increase in the filtering threshold.
More importantly, the taxon occupancy continues to decrease
with more filtering and lack of occupancy may offset the ben-
efits of reduced gene tree error. The average taxon occupancy
drops from 88% to 77% and then to 65% as we increase the
filtering threshold from 33% to 50% and then to 66%.

Empirical Results
Reconstructed ASTRAL-II insect trees (supplementary figs.
S4–S11, Supplementary Material online) change in topology
and support based on our choice of gene tree estimation
method (RAxML vs. FastTree) and the treatment of fragmen-
tary data. Before presenting results in detail, we start by de-
scribing our approach in judging accuracy on the biological
data set.

Evaluation and Expected Relations
In order to gain some indication of how accurate the species
tree results are, we first surveyed some relationships that have
been previously considered to be well established on the basis
of evidence, and also identified those that have been previ-
ously found but not consistently supported (table 1).
Among the former are the monophyly of Hexapoda
among the Pancrustacea, monophoply of “true insects,”
monophyly of the Dicondylia (Zygentomaþ Pterygota),

FIG. 1. NRF distances between true and estimated gene trees in the
simulated data set. The x-axis shows the filtering thresholds; from left
to right, more aggressive filtering is applied. Leftmost boxes are for no
filtering and the rightmost boxes are for gene trees in absence of
fragmentary data. For each threshold, box plots and average distances
(lines) over 48 replicates are shown.

Fragmentary Sequences Impact Gene Trees and Species Tree . doi:10.1093/molbev/msx261 MBE

3Downloaded from https://academic.oup.com/mbe/article-abstract/doi/10.1093/molbev/msx261/4344836/Fragmentary-Gene-Sequences-Negatively-Impact-Gene
by University of Illinois Music Library user
on 17 October 2017

Deleted Text: g
Deleted Text: t
Deleted Text:  
Deleted Text: s
Deleted Text: t
Deleted Text:  
Deleted Text: -
Deleted Text: t
Deleted Text: s
Deleted Text: t
Deleted Text: e
Deleted Text: ersu
Deleted Text: e
Deleted Text: r
Deleted Text: ,


monophyly of Pterygota, monophyly of Neoptera, mono-
phyly of Holometabola, monophyly of Antliophora
(Dipteraþ Mecopteraþ Siphonaptera), and monophyly
of Amphiesmenoptera (Trichopteraþ Lepidoptera).
Among the latter are the monophyly of the Paleoptera
(EphemeropteraþOdonata), monophyly of the
Polyneoptera, sister groups relationships between the
Grylloblattodea and Mantophasmatodea, between
Hemiptera and Thysanoptera, and between Coleoptera
and Strepsiptera, and the position of Hymenoptera as sister
to the remaining holometabolous orders. Misof et al. (2014)
found two other relationships without previous strong
support: the sister group relationship between Psocodea
and Holometabola, and a clade containing
MantophasmatodeaþGrylloblattodea plus Embiidina þ
Phasmida. We discuss our results in the context of these prior
expectations and findings.

In addition to judging the quality of the species tree based
on prior evidence, we also study the impact of the filtering on
taxon occupancy, gene tree bootstrap support, and evolu-
tionary diameter of the gene trees, measured by the tip-to-tip
distance. A reduced taxon occupancy is clearly undesirable
(even if inevitable). Reduced gene tree bootstrap support can

be interpreted as a sign of increased uncertainty about gene
trees and perhaps increased error. An increase in the evolu-
tionary distance can be indicative of artificially long branches
that can be inferred as a result of fragmentary data (Lemmon
et al. 2009).

Occupancy
Filtering fragmentary data affects the taxon occupancy of
different orders and species unevenly (fig. 3a and supplemen-
tary fig. S3, Supplementary Material online). Here, we measure
occupancy of a clade by the percent of genes that have at
least one of the species from the specific clade. Almost all
clades have at least 50% occupancy, regardless of the thresh-
old selected. However, the occupancy of clades for the filter-
ing thresholds of 20–33% are similar, with a considerable drop
at 50%, and a dramatic drop at 66% filtering or higher. At 50%
filtering, the occupancy is above 70% for all orders.

Gene Trees
Filtering more fragmentary data improves gene tree boot-
strap support for both RAxML and FastTree (fig. 3b). For
example, with no filtering, the number of branches with
100% support in RAxML gene trees is only 5% but gradually

A

B

FIG. 2. Species tree error in simulation data sets. (a) NRF error of estimated ASTRAL species trees for different numbers of genes (boxes) and varying
filtering thresholds (x-axis) with both RAxML and FastTree gene trees. The horizontal lines indicates the error rate of ASTRAL in the absence of
fragmentary data. The error bars in these figures indicate the standard errors around the average. (b) Correlation between the gene tree and the
species tree error. The y-axis shows the average species tree error (NRF distance) and x-axis shows the NRF distance between true and estimated
gene trees. Shades represent the average occupancy of species, and fragmentary filtering thresholds are noted next to the dots. Results from
RAxML and FastTree gene trees are distinguished by dot shape.
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increases to 12% with the highest level of filtering (i.e., 80%
threshold). Similarly, the median branch bootstrap support
for RAxML (or FastTree) gene trees is 37% (29%) with no
filtering but gradually increases to 48% (48%) with 80% filter-
ing. Conversely, the number of branches with <33% support
decreases from 47% (53%) with no filtering to 38% (39%) with
80% filtering (fig. 3b). Overall, both RAxML and FastTree gene
trees improve in their bootstrap support, but the improve-
ments are larger for FastTree.

The increased bootstrap with increased filtering can be
attributed to the negative impact of fragmentary sequences
on estimated gene trees (both ML and bootstrap replicates).
Fragmentary sequences and their treatment as ambiguous
data tend to result in long branches in an ML estimation
(Lemmon et al. 2009). Consistent with this expectation, we
observe that filtering out fragmentary data consistently
reduces the evolutionary diameter (fig. 3c and supplementary
fig. S12, Supplementary Material online) of gene trees, indi-
cating that fragments may result in long branches. This re-
duction in evolutionary diameter coincides with increasing
gene tree bootstrap support (fig. 3c). In the case of bootstrap
replicates used to estimate support, the problem of fragmen-
tation is exacerbated by the resampling of sites, which may
leave no or few sites with any nongap characters. Finally, note
that the perceived improvements in gene trees support and
evolutionary diameter come at the cost of reduced taxon
occupancy (fig. 3c).

Overall, the occupancy plot (fig. 3a), gene tree statistics (fig.
3b and c), and our simulations (fig. 2a) lead us to favor thresh-
olds between 20% and 50%. In the rest of the discussion,
whereas we will continue to discuss all thresholds, where
we need only one threshold, we will use 50% as the default
(we return to this choice in the discussion section).

Species Trees
With all fragments included, the ASTRAL tree inferred from
FastTree gene trees fails to recover a number of relationships
(fig. 4a): the monophyly of Hexapoda (ingroup), monophyly
of Dicondylia (M), monophyly of Pterygota (L), monophyly
of Neoptera (K), monophyly of Thysanopteraþ
Hemipteraþ PsocodeaþHolometabola (G), and monophyly
of Neuropteroidea (D). As filtering of fragments
increases (moving left to right in fig. 4a), the species tree
improves, so that monophyly of Hexapoda (Ingroup),
Dicondylia (M), Neoptera (K), and Thysanopteraþ
Hemipteraþ PsocodeaþHolometabola (G) are recovered,
albeit not strongly so in the case of Neoptera and
Hexapoda. ASTRAL run using FastTree gene trees never
recovers the monophyly of Pterygota (L) and monophyly of
Neuropteroidea (D), which have fairly strong support in the
literature (table 1). Neither does it recover the
PsocodeaþHolometabola clade (P) or the I node found by
Misof et al. (2014), which don’t have strong support in prior
analyses. Some expected clades, especially within

Table 1. Significant Clades in the Insect Phylogeny with References to Evidence Supporting Them.

Code Clade Composition Evidence Selected References

A MecopteraþSiphonaptera Fairly strong Wiegmann et al. (2009)
B Dipteraþ (MecopteraþSiphonaptera) Strong Kristensen (1999); Wiegmann et al. (2009); Beutel et al. (2011)
C TrichopteraþLepidoptera Strong Kristensen et al. (2007); Kristensen (1975)
B/C Clades BþC Strong Wiegmann et al. (2009); Beutel et al. (2009, 2014)
D Neuropteridaþ (ColeopteraþStrepsiptera) Fairly strong Wiegmann et al. (2009); Beutel et al. (2011)

Niehuis et al. (2012); Boussau et al. (2014)
D/B/C Holometabola minus Hymenoptera Fairly strong Savard et al. (2006); Misof et al. (2007)

McKenna and Farrell (2010); Heraty et al. (2011)
E Holometabola (Endopterygota) Strong Wiegmann et al. (2009); Beutel et al. (2011)

Niehuis et al. (2012); Trautwein et al. (2012)
F HemipteraþThysanoptera Fairly strong Beutel et al. (2014)
G AcercariaþHymenoptera Fairly strong Beutel et al. (2014)
H MantophasmatodeaþGrylloblattodea Fairly strong Terry and Whiting (2005); Cameron et al. (2006)

Wipfler et al. (2011)
I (missing) Clade Hþ (EmbiidinaþPhasmida) Weak Misof et al. (2014) but not in the final species tree of this study
J Polyneoptera (Orthopteroidea) Fairly strong Yoshizawa (2011); Ishiwata et al. (2011)

Letsch and Simon (2013)
K Neoptera Strong Kristensen (1975); Klass (2009)
L Pterygota (winged insects) Strong Kristensen (1991); Grimaldi and Engel (2005); Hasenfuss (2002)

Klass (2009); Wheat and Wahlberg (2013)
M ZygentomaþPteygota Fairly strong Bitsch and Bitsch (2004); Engel and Grimaldi (2004)

Klass (2009)
N Insecta Strong Bitsch and Bitsch (2004); Engel and Grimaldi (2004)

(Hennig et al. 1969; Klass 2009)
P PsocodeaþHolometabola Weak Only supported by Misof et al. (2014) and weakly by this study
Ingroup Hexapoda Fairly strong Kjer et al. (2006); Klass (2009); Grimaldi (2010);

Meusemann et al. (2010); Regier et al. (2010)

NOTE.—Letter codes refer to red-labeled nodes in figure 4, except node I, which is missing in our final species tree but present in the Misof et al. (2014) final concatenation tree.
The evidence from the literature is (subjectively) classified into three groups. Strong: virtually always recovered in previous molecular phylogenetic studies and not controversial
based on comparative morphology Fairly strong: usually recovered by phylogenomic studies but either not clearly supported by morphology or sometimes another well-
supported alternative exists. Weak: either controversial based on comparative morphology or seldom strongly supported by any analysis.
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Holometabola, always had strong support no matter how
much filtering was done (supplementary fig. S13,
Supplementary Material online).

In contrast, when RAxML gene trees are used, the only
strong relationship that is not recovered is the mono-
phyly of Hexapoda (fig. 4a and b). Any level of filtering
would result in a monophyletic Hexapoda, showing that
even for RAxML gene trees, correct handling of fragmen-
tary data can improve the species tree topology.
Moreover, even though the species tree topology inferred
from RAxML gene trees is relatively robust in the presence
of fragmentary data, the ASTRAL estimated branch
lengths increase with filtered gene trees (fig. 3d). Since
coalescent unit branch lengths tend to be underesti-
mated (Mirarab et al. 2014c; Sayyari and Mirarab 2016),

the increased branch lengths are likely to be more accu-
rate. We note that our simulations corroborate that co-
alescent unit branch lengths are underestimated and
show a strong positive correlation between gene tree ac-
curacy and estimated branch lengths (supplementary fig.
S14, Supplementary Material online).

Our final ASTRAL tree (fig. 4b) using RAxML gene trees
and 50% filtering includes all major clades with prior support
in the literature, and all but two of them (monophyly of
Hexapoda, and PsocodeaþHolometabola) had full support.
Interestingly, Misof et al. (2014) found a clade of Embiidina,
Phasmida, Grylloblattodea, and Mantophasmatodea (I) that
our final tree does not recover, but this clade has little histor-
ical support; it will be interesting to see if this clade is sup-
ported by further studies.

A B

C D E

FIG. 3. Impacts of filtering on the biological insect data set. (a) Occupancy of major clades after filtering fragmentary data with various thresholds.
(b) Distribution of average BS values for different filtering thresholds. We show the percent of branches that have BS value of 0%,<33%,>75% and
100%. (c) Average gene tree bootstrap support (y-axis) versus average (over genes) of average (over leaves) of root-to-tip distances (x-axis) with
different filtering thresholds (text next to the dots). Shades represent the average occupancy. Average of maximum tip-to-tip distances (evolu-
tionary diameter) shows similar patterns (supplementary fig. S12, Supplementary Material online). (d) Coalescent unit branch lengths computed
by ASTRAL. Each dot corresponds to a branch and its coalescent unit length is shown when estimated from unfiltered gene trees (x-axis) or 50%
filtered gene trees (y-axis). Several branches (25 for FastTree and 13 RAxML) that were not shared between the two trees are removed. A line is
fitted to all the points corresponding to each method, and the dashed line shows the unity line. (e) Discordance of gene trees with various filtering
thresholds (x-axis) versus the corresponding ASTRAL species tree. Boxplots show distributions of the proportion of species tree branches not
found in gene trees.
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Gene Tree Species Tree Discordance
As a final evidence that gene tree accuracy has improved, we
demonstrate that after filtering, both RAxML and FastTree
gene trees show reduced discordance. Overall, the amount of
gene tree discordance with the species tree reduces substan-
tially as we increase filtering, especially up to the 66% thresh-
old (fig. 3e). These reductions are the reason for the reduced
coalescent unit branch lengths (fig. 3d). Similarly, the overall
ASTRAL quartet score (proportion of gene tree quartets
found in the species tree) increases as more filtering is applied
(supplementary table S2, Supplementary Material online).

To further break down patterns of discordance, we com-
pare support for major clades (orders plus clades shown in
table 1) in our gene trees before and after filtering (fig. 5).
Before filtering, many of the insect orders receive surprisingly

little support in our gene trees. For example, with RAxML (or
FastTree) gene trees, 13 (or 14) out of 26 orders are recovered
in less than half of the gene trees, and only six orders are
recovered in at least three-quarters of the gene trees.
Moreover, most gene trees have low support and cannot
strongly reject or support the monophyly of these orders.
However, the 50%-filtered gene trees show strong support
for most orders. Only seven orders are recovered in fewer
than half of these gene trees, and the number of orders
supported by at least three-quarter of the genes increases
to 13 and 11, respectively, for RAxML and FastTree. As an
example, before filtering, 35% (28%) of RAxML (FastTree)
genes recovered Lepidoptera as a monophyletic clade, and
only 15% (9%) have high bootstrap support, whereas, after
filtering, 64% (62%) recover it and 47% (44%) have high
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support. Although Lepidoptera has one of the biggest
changes, patterns across all orders consistently point to re-
duced discordance. Major clades (other than orders) also
have increased support and substantial reduction in highly
supported discordance.

Discussion

Impacts of Fragments
We showed that fragmentary data can have substantial neg-
ative impacts on gene trees and consequently species trees
estimated in a summary method pipeline. These results build
on previous studies of weak phylogenetic signal, the resulting
high gene tree error (or uncertainty), and species tree error
(Patel et al. 2013; Salichos and Rokas 2013; Mirarab et al.
2014c; Xu and Yang 2016). It is important to note that frag-
mentation not only weakens the signal, but it may also create
biases in an ML analysis (Lemmon et al. 2009).

The harmful impact of fragmentation was previously ob-
served by Hosner et al. (2016). Our results corroborate their
observation. However, we propose a very different solution.
Unlike their solution of removing the entire gene, which can
lead to loss of otherwise useful signal and perhaps a non-
random sample of genes (Huang et al. 2016), we propose
removing specific problematic taxa. Importantly, we observed
that trading off decreased taxon occupancy with decreased
levels of fragmentation (type I vs. type II in the terminology of
Hosner et al. [2016]) is beneficial, but only to a point; excessive
filtering can also impact the accuracy of the species tree by
creating missing data in gene trees. The amount of improve-
ment depended on the number of genes, and filtering did not
seem useful when only a small number of genes was available.

The reductions in gene tree error were substantial (e.g., from
0.39 to 0.28); improvements in species tree topological accu-
racy may be considered small in magnitude (0.01–0.02 NRF),
but we note that the error is reduced by a quarter of the
original error, and that, these improvements come at no extra
cost. We further note the improvements in species tree
branch lengths.

Consistent with the literature (Hovmöller et al. 2013;
Huang and Knowles 2016; Xi et al. 2016), our results indicate
that summary methods are somewhat robust to missing data,
but we also show that this robustness has limits as seen by
Hosner et al. (2016). In the context of a single maximum
likelihood analysis, Wiens (2006) observed that the absence
of enough data, and not the presence of missing data per se,
can cause inaccuracy. Importantly, we do not filter entire
genes because they miss some taxa or because they have
some fragmentary sequences. Prior research suggests aggres-
sive filtering of entire genes with missing data can be harmful
(Huang et al. 2016; Streicher et al. 2016). Our results do not
conflict with those studies and our filtering approach is in fact
motivated by their observations.

Finally, we observe that the number of genes has the stron-
gest effect on the species tree error. Therefore, removing
genes is not desirable. Instead, when possible, increasing the
number of genes may improve the species tree topological
accuracy even in the presence of fragments.

Filtering Threshold
The best choice of the filtering thresholds will always depend
on the data set. However, our analyses suggest a possible way
forward for systematists. Since ML tools such as FastTree can
easily compute many hundreds of gene trees quickly and
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relatively accurately, one can examine different thresholds
empirically. By changing the threshold, reestimating gene
trees, and computing occupancy (q), average gene tree sup-
port (p), and evolutionary diameter (d) (e.g., as in fig. 3b and
c), analysts can look for thresholds that reduce occupancy
minimally while increasing support or decreasing long
branches substantially. This involves making trade-offs and
the best way of making such trade-offs requires further
analyses.

Some simple rule-of-thumbs could be designed, and sup-
plementary table S3, Supplementary Material online gives
several rules and applies them to the insect data sets. For
example, we can simply use the threshold that maximizes
pq/d. Another simple rule is using pq, which would emphasize
occupancy and support equally. Based on the belief, backed
by the literature, that that reduced occupancy is less damag-
ing than high gene tree error, we can use p2q to weight
bootstrap support more than occupancy. Finally, one can
pick the threshold that gives the highest p given that q is
above a threshold (say, 70%). On the insect data set, these
rules selected thresholds between 20% and 50% for RAxML
gene trees (supplementary table S3, Supplementary Material
online). Since the 50% threshold was chosen the most often,
we chose to use it as our default threshold. On the simulated
data set, for FastTree gene trees, where we could perform
bootstrapping, several of our rules (e.g., p2q and pq

1�p) tend to
select thresholds between 20% and 50% (supplementary fig.
S15, Supplementary Material online); these match the opti-
mal thresholds for FastTree simulations (fig. 2).

Even though these rules seem to pick reasonable thresh-
olds on our insect data, whether any of them performs well
on a wide range of data sets remains unclear and require
future studies. Moreover, filtering in general, and the use of
bootstrap support in particular, could always add a bias, and
thus, we do not suggest using thresholds that are varied from
gene to gene.

Finally, if some relationships are judged very strong by prior
evidence, detecting whether one recovers them may also
prove useful, though this strategy should be used judiciously
to avoid confirmation bias. In absence of extensive analysis,
thresholds 25–50% seemed reasonable in our simulated and
empirical analyses and may prove useful as a default for other
analyses.

RAxML versus FastTree
Although the choice of the ML method for inferring gene
trees was not the focus of our study, our simulation analyses
showed a clear advantage in using RAxML versus FastTree.
Moreover, on the biological data set, using RAxML (with au-
tomatic model selection) rather than FastTree (with a fixed
model) led to further improvements in the species tree, re-
covering the monophyly of Neuropteroidea (node D) and
Pterygota (node L), both of which have strong evidence
from the literature. It is also interesting that the support for
Neoptera (Node K) and the tentative sister-group relation-
ship of Psocodea and Holometabola found by Misof et al.’s
concatenation results (node P) were increased using RAxML
gene trees. Overall, simulations and real data indicate that not

only gene trees are less accurate when estimated using
FastTree, but also, the ASTRAL species trees inferred from
FastTree gene trees are less accurate than those inferred
from RAxML gene trees. Interestingly, FastTree gene trees
consistently have reduced branch lengths compared with
RAxML trees on the biological data set (fig. 3c), perhaps be-
cause of FastTree’s extensive use of the minimum evolution
criteria (in addition to maximum likelihood). Finally, we note
that FastTree does not allow for extensive model selection
(for proteins), a fact that on biological (but not simulated)
data sets could further contribute to its inaccuracies.

A previous independent simulation study by (Liu et al.
2011) had concluded that the two methods are essentially
identical in terms of accuracy. The opposing conclusion
drawn by (Liu et al. 2011) and our study may be related to
simulation conditions. Our study considers conditions that
include short branches prone to ILS but includes no align-
ment error; in contrast, (Liu et al. 2011) use data sets originally
simulated to study alignment accuracy and include very di-
vergent sequences (at least 50% average p-distance between
sequences). To our knowledge, ours is the first simulation
study to show that RAxML gene trees are more accurate,
and we believe, the results should discourage analyses that
rely solely on FastTree. Although many practitioners have
perhaps already suspected that the much slower RAxML al-
gorithm is more accurate under some conditions, the results
shown here provide direct comparative evidence.

Despite the difference in accuracy, impacts of fragmenta-
tion had broadly similar patterns, regardless of the gene tree
method used. Therefore, we believe for exploratory analyses
of a data set, the use of FastTree is justified whereas final
analyses used to infer the species tree are more reliable
when based on the RAxML gene trees. Future work should
test if using Bayesian methods for estimating gene trees
would similarly improve the species tree accuracy.

Insect Phylogeny
As the debate between concatenation and summary meth-
ods pipelines continues (Springer and Gatesy 2014; Xi et al.
2014; Simmons and Gatesy 2015; Edwards et al. 2016), we
note that Misof et al. (2014) had only used concatenation in
their analyses. Our final ASTRAL tree using RAxML gene trees
is highly congruent with the concatenation tree of Misof et al.
(2014). This result has several implications for insect phylog-
eny. Overall, it supports nearly all of the results of their con-
catenation analysis with respect to the major events in insect
evolution, using a different analysis strategy. Where their final
tree showed relationships with weak support, generally ours
did as well, indicating that some results may require further
effort to resolve with confidence. It is likely that with the
generation of phylogenomic data with lower fragmentation
(e.g., using full genomes instead of transcriptomes), gene tree
summary methods will be able to improve upon the results of
both studies.

Methodological Limitations
It is important to note that even in the final RAxML gene
trees, extensive gene tree discordance remains, and some of
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the discordance is highly supported (fig. 5). The presence of
highly supported discordance can in principle favor summary
methods over concatenation. However, we note that our
analyses that included fragments produced results that
strongly conflicted with strong evidence from the prior liter-
ature. Thus, the choice is not only between concatenation
and summary methods but more broadly about choosing
data generation methods and tailoring the analysis pipeline
to the data. Summary methods can only produce good results
when provided with good gene trees and removing fragmen-
tary data and other sources of the error are essential to that
goal. Our paper demonstrated negative impacts of fragmen-
tary data and suboptimal gene tree estimation methods.
However, several other sources of error were not addressed.

Even after filtering, the proportion of genes that fail to
recover major insect orders remains arguably high. It is likely
that gene tree error persists even after filtering. One major
cause of the remaining discordance is likely the lack of strong
signal in gene trees. In addition to insufficient signal, our
models of sequence evolution are likely violated in many
ways, especially when we consider 400þMy of evolution, as
we did here. Factors that include convergent effects of strong
selection or unexpectedly high sensitivity to individual sites
(Shen et al. 2017) may lead to systematic biases. Finally, even
when the gene tree discordance is real, it may be due to
factors other than ILS, including incorrect detection of orthol-
ogy. Future work should explore improved scalable methods
of dealing with these difficulties.

Materials and Methods

Analysis Pipeline for Insect Data Set
We used the amino acid sequence data provided by Misof
et al. (2014) as “supplementary 7.”

Filtering Strategy
In real data, gaps can appear for two reasons: insertions and
deletions (as inferred by an alignment algorithm) and missing
data. Our goal is to filter out sequences that are fragmentary
(partially sequenced or assembled) but we don’t wish to re-
move sequences due only to indels. Defining what is a frag-
mentary sequence is complicated by the presence of gappy
sites. Also, very gappy sites increase running time but provide
little signal to the maximum likelihood analyses, which treat
them as missing data (and not as indel signal). To address
both issues, before identifying fragmentary sequences, we first
remove extremely gappy sites, defined as those with >90%
gaps. Although this filtering can remove photogenically infor-
mative indels, we note that indels are not incorporated in
models of sequence evolution used in our gene tree estima-
tion tools. We then remove species that have <20% (1/5),
25% (1/4), 33% (1/3), 50% (1/2), 66% (2/3), 75% (3/4), or 80%
(4/5) amino-acids (i.e., characters other than gaps). In order to
filter sequences, we use a tool called seqtools, implemented as
part of the PASTA (Mirarab et al. 2014b) package. After fil-
tering sequence, we reestimate gene trees, but we keep the
same alignment. In order to track the occupancy and

bootstrap support, we use in-house scripts, available online
https://github.com/esayyari/discoVista.

Gene Trees and Species Trees
After each round of filtering, gene trees are estimated using
FastTree2 (Price et al. 2010) using its default amino acid sub-
stitution model, which is JTT (Jones et al. 1992) or RAxML
(Stamatakis 2014) with the automatic amino acid model
selection.

To infer our bestML gene trees, we use RAxML (Stamatakis
2014), version 8.2.9 with ten runs of inference using different
starting trees. Unlike FastTree, RAxML implements many pro-
tein substitution models and it can find the best scoring
protein-coding substitution model (Price et al. 2010;
Stamatakis 2014). We used RAxML’s automatic model selec-
tion approach; numbers of genes with various models are
shown in supplementary table S4, Supplementary Material
online. When several species have identical sequences for a
gene, we keep only one of them (i.e., remove redundant ones)
in our RAxML runs and add the removed species back to the
final inferred gene tree as a polytomy.

For performing gene tree bootstrapping using FastTree, we
first generate bootstrap sequences using RAxML and then
run FastTree on those to estimate the bootstrapped gene
trees. We then draw those bootstrap gene trees on ML
gene tree branches using the newick utility (Junier and
Zdobnov 2010). For RAxML gene trees, we use the rapid
bootstrapping option on reduced sequences (after removing
identical sequences). After gene tree estimations, we add back
the identical species and draw these bootstrap gene trees on
the best ML gene trees (RAxML) following the same proce-
dure using the newick utility.

We use ASTRAL-II to estimate the species trees summa-
rizing gene trees with at least four taxa left after filtering.

Simulation Procedure
We use one model condition of a previously simulated data
set from Mirarab and Warnow (2015) with 100 ingroup taxa
and one outgroup. For each of the 50 replicates in this data
set, Simphy (Mallo et al. 2016) was used to simulate a species
tree according to the Yule model, and then 1,000 gene trees
were simulated using the MSC model which captures ILS. The
data set has moderate levels of ILS; the average distance be-
tween true gene trees and true species trees is 0.33. We sub-
sampled genes to create three different data sets with 50, 200,
or 1,000 genes. DNA sequences of varying length (supplemen-
tary fig. S16, Supplementary Material online) were simulated
down the gene trees using Indelible (Fletcher and Yang 2009)
with GTR parameters and stationary distributions estimated
from published biological data sets, as detailed by Mirarab
and Warnow (2015). Note that simulated sequences did not
include any indels and thus were already aligned. Mirarab and
Warnow (2015) suggested removing two replicates that in-
clude almost no phylogenetic signal, and we use the same
strategy, leaving us with 48 replicates. This creates our unfil-
tered base data set.
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Adding Fragmentation
We add fragmentation to our complete simulated data set
using a procedure that seeks to emulate patterns of fragmen-
tation in the insect biological data set. 1) For each replicate,
we order species in the biological data set and the simulated
data set with respect to the tip-to-root distances. 2) We
randomly select 100 of the biological species and map
them to the simulated species with the same position in
the order. The main outgroup (Ixodes scapularis) in the bio-
logical and simulated data sets always map to each other. 3)
For each replicate in the simulated data set, we randomly
sample (with replacement) 1,000 genes in the insect data
sets that have at least 101 species, including the main out-
group. 4) For each species in each simulated gene, we com-
pute the portion of gap sites in the corresponding gene
alignment for the corresponding species in the biological
data, and remove the same portion of sites in the simulated
data set at random positions. When a species is missing from
a gene in the biological data set, we use the same species from
another randomly chosen gene.

Filtering Fragments
Although our simulated data do not include indels, injected
fragments can create sites that are almost entirely gaps; these
sites increase running time but include minimal signal. We,
therefore, remove sites with >90% gaps, removing between
0.0% and 2.0% (median: 0.1%) of the total number of charac-
ters in all sequences. We then remove from each gene any
species that has less than a certain fraction (e.g., 10% – 80%)
of the full gene. For example, at 10%, we remove only sequen-
ces that have 90% or more gaps.

Gene Trees and Species Trees
For each threshold, after filtering, we estimate gene trees using
both RAxML (Stamatakis 2014) version 8.2.9 with two starting
trees and FastTree (Price et al. 2010) version 2.1.9 Double
precision using the GTRþC model of sequence evolution
(Tavaré 1986). We infer the species tree using ASTRAL-II
(Mirarab and Warnow 2015) version 4.11.1, which is a com-
monly used summary method. We build species trees using
all 1,000 genes or using randomly chosen subsets of 200 or 50
genes.

Statistical Tests
All P values reported are computed using the Analysis of
variance (ANOVA) tests. For impacts on gene trees, we use
the gene tree method (RAxML vs. FastTree) and filtering
thresholds as independent variables. For species tree, to study
the impact of presence/absence of fragments, we only include
species trees of orig-seq and no-filtering, and use a binary var-
iable to encode it and use another variable for the number of
genes. To study the impact of filtering with sufficiently small
thresholds, we restrict the data to those with up to 33%
filtering and we use the filtering threshold as a numerical
independent variable.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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