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m Abstract Invasions by non-native ants are an ecologically destructive pheno-
menon affecting both continental and island ecosystems throughout the world. Invasive
ants often become highly abundant in their introduced range and can outnumber native
ants. These numerical disparities underlie the competitive asymmetry between inva-
sive ants and native ants and result from a complex interplay of behavioral, ecological,
and genetic factors. Reductions in the diversity and abundance of native ants resulting
from ant invasions give rise to a variety of direct and indirect effects on non-ant taxa.
Invasive ants compete with and prey upon a diversity of other organisms, including
some vertebrates, and may enter into or disrupt mutualistic interactions with numerous
plants and other insects. Experimental studies and research focused on the native range
ecology of invasive ants will be especially valuable contributions to this field of study.

INTRODUCTION

Ants play a diversity of roles in terrestrial ecosystems. Ants act as predators, scav-
engers, herbivores, detritivores, and granivoreslifdbler & Wilson 1990) and
participate in an astonishing array of associations with plants and other insects
(Beattie 1985, ldlidobler & Wilson 1990, Huxley & Cutler 1991, Jolivet 1996).
Ants, inturn, are preyed upon by a variety of specialist predators, including reptiles
(Pianka & Parker 1975), mammals (Redford 1987), spiders (Porter & Eastmond
1982), and insects (Gotelli 1996) and are host to both dipteran (Feener & Brown
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1997) and hymenopteran parasitoids (Heraty 1994). Ants also serve as impor-
tant agents of soil turnover, nutrient redistribution, and small-scale disturbance
(Holldobler & Wilson 1990, Folgarait 1998, MacMahon et al. 2000). For these
reasons, and because they can be sampled and identified with relative ease, ants
figure prominently in ecological studies and have become a key indicator group in
studies of diversity and ecosystem function (Agosti et al. 2000). The widespread
success of ants stems in large part from their elaborate social behavior, which is
itself a tremendously rich source of information for studies of kin selection, repro-
ductive skew, levels of selection, foraging behavior, and self-organization (Wilson
1971, Hlldobler & Wilson 1990, Keller 1993, Bourke & Franks 1995, Crozier &
Pamilo 1996).

Invasive ants form a small and somewhat distinct subset of the at least 150
species of ants introduced into new environments by humans (McGlynn 1999a).
A majority of introduced ants remain confined to human-modified habitats and
some of these species are often referred to as tramp ants because of their re-
liance on human-mediated dispersal and close association with humans generally
(Holldobler & Wilson 1990, Passera 1994). Although also largely dependent on
humans to reach new environments, invasive ants differ from most other introduced
ants in several key respects. Invasive ants penetrate natural ecosystems where they
often reduce native ant diversity and affect other organisms both directly and in-
directly. A minor caveat regarding this definition is that species invading oceanic
islands with few or no native ants may exhibit patterns of invasion different from
those observed in regions with indigenous ants. In Hawaii, for example, species
such adHypoponera opacicepand Solenopsis papuanaave spread into undis-
turbed forest (Reimer 1994), and their occurrence in natural environments on this
archipelago may be due in part to the lack of native ants there (Zimmerman 1970,
Cole et al. 1992, Reimer 1994).

In this review, we focus onaj the causes underlying the ecological success
of invasive ants (especially their interactions with native ants), Bpthé direct
and indirect effects that occur following invasion. This perspective differs from
previous reviews on introduced ants, most of which are limite&atenopsis
invictaand have primarily addressed urban and agricultural impacts (Vinson 1986,
1997, Vander Meer et al. 1990a, Williams 1994, Taber 2000). Here, in contrast,
we highlight studies conducted in more natural ecosystems. Given their broad
and steadily increasing geographical range, high local abundance, and potential
to disrupt ecosystems, invasive ants are an important conservation concern. This
problem is particularly worrisome given that, once established, invasive ants have
proven difficult to control and virtually impossible to eradicate. Obtaining a better
understanding of the causes and consequences of ant invasions remains crucial to
achieving the ultimate goal of reducing problems associated with these invaders
and preventing the introduction of other species that possess similar characteristics.
We also submit, as have others (Ross & Keller 1995, Tschinkel 1998, Chapman &
Bourke 2001), that these introductions present unique opportunities for research
in ecology, behavior, and evolution.
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INVASIVE ANTS AND THEIR GENERAL
CHARACTERISTICS

Table 1 lists characteristics of six of the most widespread, abundant, and damaging
invasive ants. A great disparity exists with respect to how much is known about
each of these species. For example, the red imported fir&samvictg ranks as

one of the most well studied social insects (Ross & Keller 1995, Tschinkel 1998),
whereasAnoplolepis gracilipesemains poorly studied by comparison, so much

so that its native range is not even known. As an inevitable result of this difference,
we devote more attention to the relatively well-knofirinvictaand the Argentine

ant (Linepithema humilethan to other species but caution against drawing the
conclusion that other invasive ants reseniblbumileandsS. invictaor pose less

TABLE 1 Characteristics of the six most widespread, abundant, and damaging invasive ants

Colony Structure®

Geographical Rang& Poly- -
morphic Native  Introduced
Species Subfamil§ Native Introduced workers Range  Range Diet
Anoplolepis gracilipes F AF? (1), AF, AS, AU, N ? U (4,5) OM (4,5)
Long-legged ant, AS? (2) CAR, IO,
crazy ant PO (3)
Linepithema humile D SA(6,7) AF, AO, AS, N M-V (8) U (8) OM (9-11)
Argentine ant AU, ME, NA,
PO, SA (6)
Pheidole megacephalaM AF (1) AF, AU, NA, Y ? U (5,12) OM, GR
Big-headed ant CAR, IO, ME, (5,12)
PO, SA (3)
Solenopsis invicta M SA(13)  CAR, NA (14), Y V(17) V(17,18) OM(19)
Red imported fire ant AU (15), NZ (16)
Solenopsis geminata M CA,NA, AF AS, AU, PO, Y V (22) V(?) OM, GR
Tropical fire ant SA(20) CAR(?),10(21) (19,23)
Wasmannia M CA,SA  AF,CAR, PO, N ? U (24) OM (24)
auropunctata 3) SA, NA (3)

Little fire ant

3D = Dolichoderinae, F= Formicinae, M= Myrmicinae.

bAF = Africa (subsaharan), AG= Atlantic Ocean (islands), AS= Asia, AU = Australia, CA= Central America, CAR=
Caribbean, 10= Indian Ocean (islands), ME= Mediterranean, NA= North America, PO= Pacific Ocean (islands),
SA = South America.

™ = Multicolonial, U = Unicolonial, V = Variable (see text).

dOM = omnivorous, GR= granivorous.

€The native range o8. geminatds disputed, in part because the species is continuously distributed from the SE United
States to northern South America. Some of these populations (including those in the Caribbean) may be the result of human
introductions. See Ross et al. 1987 for more information.

1. Wilson & Taylor 1967; 2. Wheeler 1910; 3. McGlynn 1999a; 4. Haines & Haines 1978a; 5. Greenslade 1972; 6. Suarez et al.
2001; 7. Tsutsui et al. 2001; 8. Tsutsui et al. 2000; 9. Newell & Barber 1913; 10. Markin 1970a; 11. Human et al. 1998;
12. Hoffmann 1998; 13. Ross & Trager 1990; 14. Williams et al. 2001; 15. http://www.dpi.qgld.gov.au/fireants/; 16. http://
www.maf.govt.nz/biosecurity/pests-diseases/animals/fire-ants/; 17. Ross & Keller 1995; 18. Tschinkel 1998; 19. Tennant &
Porter 1991; 20. Ross et al. 1987; 21. Taber 2000; 22. MacKay et al. 1990; 23. Torres 1984; 24. Clark et al. 1982.
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serious threats. Our focus on the species listed in Table 1 is not meant to dismiss
the potential importance of other, less well known or more locally distributed ants;
some of these may emerge as problematic invaders in the future. In this section,
we provide an overview of the general characteristics of invasive ants; we return
to many of these same topics later in our review.

Invasive ants originate in both the New and Old Worlds but now occur in many
areas outside their original ranges (Table 1). For all species, the climate of the
introduced range approximately matches that of the native randeimile for
example, is native to sub-tropical and mild-temperate portions of Argentina and
surrounding regions and is hot known to invade tropical and cold-temperate regions
but is widespread in areas with mild-temperate climates (e.g., Mediterranean-type
ecosystems) (Suarez et al. 20(&)invicta also from central South America, like-
wise prevails as an invader primarily in areas of the southeastern United States with
mild-temperate or subtropical climates (Tschinkel 1983, Korzukhin et al. 2001).
The remaining invasive ants are from the tropics or subtropics and have primarily
invaded regions with similar climates. In Hawaii, where several invasive ants now
occur, tropical species (e.gheidole megacephatndA. gracilipeg occur at low
to mid elevations, whil&. humileoccurs at intermediate to high elevations (Fluker
& Beardsley 1970, Reimer 1994). Cold-temperate climates appear unsuitable for
the invasive ants listed in Table 1; in areas with such climates these ants occur only
around human habitation (Ulloa-Chacon & Cherix 1990, Taber 2000, Suarez et al.
2001).

Invasive ants exhibit both phylogenetic and morphological diversity (Table 1).
Although both the Ponerinae and Pseudomyrmicinae contain widespread tramps
(McGlynn 1999a), the invasive ants listed in Table 1 derive from the three most
species-rich subfamilies of ants: Dolichoderinae, Formicinae, and Myrmicinae.
Although SolenopsisWasmanniaandPheidoleare all Myrmicines, these genera
are placed in different tribes (Brown 2001). The fire ants, however, include three
invasive species$. invicta S. richteri and the widely distribute&. geminata
Compared to ants as a whole, invasive ants are small to medium-sized; workers
range in length from 1-2 mm\Wasmannia auropunctatdap >5 mm (A. gra-
cilipes). Across species, invasive ants also vary in the extent of physical polymor-
phism among workers, ranging from monomorphismhumile W. auropunctata,

A. gracilipeg to pronounced dimorphisnP( megacephalaand polymorphism
(Solenopsis(Table 1). Although McGlynn (1999b) argued that introduced ants
are smaller than congeners that tend not to be introduced, he exélugetilipes
(monomorphic but with polymorphic congenem)megacephaléss. invicta and

S. geminatérom his analysis because of caste polymorphism. Itis unclear whether
these ants are smaller than their non-invasive congeners.

A striking feature shared by many invasive ants is the tendency for introduced
populations to be unicolonial, that is, to form expansive and polygynous (multiple-
gqueened) supercolonies that lack distinct behavioral boundaries among physically
separate nests. Unicoloniality appears to be over-represented among invasive ants
(Table 1) given that only a tiny minority of ant species exhibits this form of colony
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structure. Hlldobler & Wilson (1977) suggested that unicoloniality allows species
such ad.. humile W. auropunctataandP. megacephal#o attain high local abun-
dances and consequently to dominate entire habitats. Like these species, intro-
duced populations @&. gracilipesmaintain populous supercolonies within which
intraspecific aggression is largely absent (Haines & Haines 1978a). The situation
for fire ants, however, is more complex. In North Ameri&,invictacolonies

now occur in both monogyne and polygyne forms (Ross & Keller 1995, Tschinkel
1998), although it should be noted that the monogyne form appears responsible for
the initial and rapid invasion of most of the southeastern United States. Monogyne
colonies defend territories against neighboring conspecifics (Tschinkel et al. 1995,
Adams 1998), whereas polygyne colonies exhibit reduced intraspecific aggression
(Morel et al. 1990, Vander Meer et al. 1990b) and maintain high densities of inter-
connected nests (Bhatkar & Vinson 1987, Porter et al. 1988, Porter & Savighano
1990, Greenberg et al. 1992, Macom & Porter 19%s)lenopsis geminatalso
occurs in both monogynous and polygynous forms (Banks et al. 1973, Adams
et al. 1976, MacKay et al. 1990, Williams & Whelan 1991). Although little is
published concerning the extent to which polygyn8ugeminatalefends territo-

ries intraspecifically, like polygyn8. invicta polygynousS. geminataan reach

high densities (MacKay et al. 1990, Way et al. 1998).

Another characteristic shared by invasive ants is omnivory. Like many above-
ground foraging ants (&lldobler & Wilson 1990), invasive ants opportunistically
scavenge dead animals, prey upon small invertebrates, and harvest carbohydrate-
rich plant and insect exudates. Differences exist, of course, in the proportional
representation of different food items in the diets of each speSiegeminata
(Tennant & Porter 1991) and perhapsmegacephal§Hoffmann 1998), for ex-
ample, commonly include a high proportion of seeds in their digtgeminata
S. invictag andW. auropunctatall possess a venomous sting that may give these
species a greater ability to subdue vertebrate and large invertebrate prey. In Ar-
gentina,L. humileis commonly referred to as the sugar ant, a fitting name given
its strong preference for sweet substances (Newell & Barber 1913). Because inva-
sive ants feed extensively on liquid food (Markin 1970a, Tennant & Porter 1991,
Human et al. 1998), it is often difficult to obtain an understanding of the composi-
tion and seasonal variability of the diets of invasive ants and how these diets might
differ from those of native ants.

Other introduced species not listed in Table 1 also possess attributes of inva-
sive ants, but are either poorly studied or currently exhibit localized distributions.
Some of these species may become troublesome invaders. For example, Boomsma
etal. (1990) and Van Loon et al. (1990) describe the spécissis neglectusom
urban areas of central Europe (see also Seifert 2008gglectusesembles other
invasive ants in that it forms populous, unicolonial supercolonies and appears to
outcompete other ants, at least in urban environments. The black imported fire
ant (Solenopsis richteyiwas introduced into the southeastern United States from
Argentina several decades prior to the introduction of its more notorious congener,
S. invictag but is now confined to only a small portion of northern Alabama and
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Mississippi, where it hybridizes witB. invicta(Shoemaker et al. 1996). The im-
pact of Solenopsis richterdn ants and other organisms native to the southeastern
United States is poorly known. Native to Bra&gratrechina fulvéhas invaded the
Magdalena Valley of Colombia where it reduces native ant diversity (Zenner-
Polania 1994); this species is also reported from Cuba (Fontenla Rizo 1995).
Another potentially invasive speciesAsoplolepis custodiendlative to southern
Africa, this species has invaded Zanzibar where it reaches extremely high densities
and displaces the native weaver &ecophylla longinodgWay 1953).Techno-
myrmex albipes likewise highly invasive in edge habitats in Mauritius and Mada-
gascar and is associated with substantially reduced ant species richness in these
areas (P.S. Ward, unpublished observation). The AfrRaatrechina longicor-

nisis a widely distributed tramp that is sometimes considered invasive (McGlynn
1999a, Wetterer et al. 1999), but few studies have documented its effects on native
ants, and in no case is it known to be a competitive dominant (Levins et al. 1973,
Torres 1984, Banks & Williams 1989, Morrison 1996). Successful identification of
future invaders will be greatly facilitated by careful regional studies that document
new introductions and incipient invasions (e.g., Deyrup et al. 2000).

DISPERSAL AND COLONIZATION

All the ants listed in Table 1 have been introduced—most of them worldwide—as
a result of human commerce. Species differ, however, in the importance of human-
mediated dispersal versus natural dispersal in determining large-scale patterns of
spread. Inintroduced populations of some invasive ants, winged dispersal of female
reproductive forms is rare or absent and colonies often reproduce by budding.
Colony reproduction by budding alone greatly limits rates of spread: 37—-402 m/yr
for A. gracilipesin the Seychelles (Haines & Haines 1978a), 10—-40 m/yr for the
polygyne-form ofS. invictain central Texas (Porter et al. 1988), 15-270 m/yr for
L. humilein northern California (Suarez et al. 2001), and approximately 15 m/yr
for P. megacephalén northern Australia (Hoffmann et al. 1999). In the absence
of human-mediated dispersal, introduced populatioMdagmannia auropunctata
are also believed to spread predominantly by budding (Clark et al. 1982). Because
rates of spread by budding are so low [i.e., on the low end for terrestrial organisms
(Grosholz 1996)], species that undergo colony reproduction solely by budding
depend largely on human-mediated dispersal to colonize new and distant locations
(Suarez et al. 2001). Moreover, budding limits the initial spread of invasive ants to
areas adjacentto points of introduction or to source habitats. In such cases, invasive
ants occur as localized edge effects (Suarez et al. 1998, Human et al. 1998, Bolger
et al. 2000, Holway et al. 2002).

Importantexceptionsto the above pattern incl8dgeminatand the monogyne
form of S. invictg two species for which winged dispersal of female reproductive
forms is common (see De Heer et al. 1999 and Goodisman et al. 2000 for discus-
sions of dispersal in the polygyne form®finvictg. In such cases, regional-scale
patterns of spread may be driven both by human-assisted transport and by the



ECOLOGICAL EFFECTS OF ANT INVASIONS 187

winged dispersal of female alates, which can travel kilometers from natal nests
during mating flights (Wilson & Brown 1958, Vinson & Greenberg 1986, Porter
etal. 1988). In contrast to colony reproduction by budding, winged dispersal of fe-
male reproductive forms enables new beachheads to be established in areas distant
from the colony of origin.

Nesting behavior also influences the importance of human-assisted transport.
Invasive ants exhibit general and somewhat flexible nesting habits, allowing themto
associate closely with humans. Incipient colonies occupy an especially wide range
of nesting substrates, including nursery stock and other products of commerce.
Some invasive ants readily relocate nests in response to physical disturbance or to
exploit favorable but ephemeral sitesqlldiobler & Wilson 1977, Passera 1994).

L. humile for example, which often uses ephemeral nest sites, engages in nest
relocation in response to changes in the physical environment (Newell & Barber
1913, Markin 1970b, Passera 1994, Gordon et al. 2001) and the distribution of food
resources (Newell & Barber 1913, Holway & Case 2000, Silverman & Nsimba
2000). For species with budding, such opportunistic nesting behavior must play a
key role in distributing nests to locations where they are likely to be transported by
humans. Lastly, the ability of colonies of bdh invicta(Morrill 1974, Tschinkel

1983) and_. humile(Barber 1916) to raft in response to flooding may pre-adapt
them to live in disturbed or well-watered urban environments.

Following dispersal to a new environment, propagules face a host of obsta-
cles that can impede successful establishment. As for other introduced insects
(Lawton & Brown 1986, Simberloff 1989), the factors influencing the probability of
successful colonization by invasive ants remain poorly known. Below, we discuss
attributes that may affect colonization success but acknowledge that the coloniza-
tion process itself remains inadequately studied. This discussion focuses on ants
that reproduce by budding; independent colony founding by the monogyne form
of S. invictahas been studied in detail (Markin et al. 1972, Tschinkel & Howard
1983) and is reviewed elsewhere (Tschinkel 1993, 1998; Bernasconi & Strassmann
1999).

Although little information exists on the sizes of propagules transported by
human commerce, it seems likely that the probability of successful establishment
increases steeply with propagule size, at least for small colonies. Propagules with
no workers must commonly fail because queens in species with dependent colony
founding often lack sufficient metabolic reserves to found colonies on their own
(Chang 1985, Keller & Passera 1989, Ross & Keller 1995, Hee et al. 2000). For
incipient colonies containing workers and atleast one queen, the number of workers
present is likely an important determinant of colony-level survival. Disparities
in the size of incipient colonies are important since, relative to smaller propa-
gules, larger ones may be able to better withstand stressful physical environments
(Markin et al. 1973), starvation (Kaspari & Vargo 1995), and competition from
established, neighboring colonies. Although much remains to be learned about
the factors governing colonization success, important insights could be obtained
through manipulative experiments involving founding queens or small colonies.
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Such experimental approaches have been employed with great success as a means
to examine the dynamics of independent colony founding.imvicta(Tschinkel
& Howard 1983; Adams & Tschinkel 1995a,b; Bernasconi & Strassman 1999).

For at least some species of invasive ants, propagules need not even contain
queens to establish successfully (Aron 2001). Although workers of all invasive ants
are sterile, in species suchlasiumile workers can rear eggs and early instar larvae
into sexuals in the absence of queens (Passera et al. 1988, Vargo & Passera 1991).
Moreover, inL. humile production of sexuals does not require overwintering,
gueens produce haploid eggs throughout the year, and mating occurs in the nest
(Aron 2001). In combination, these attributes make it possible for dequeened
propagules that contain eggs and larvae to produce both male and female sexuals.
There s little evidence of inbreedinglinhumilecolonies despite intranidal mating
(Krieger & Keller 2000) (probably because males disperse by flight among nests),
and therefore dequeened propagules could in theory develop into reproductively
viable colonies (Aron 2001). It will be of interest to determine if other invasive ants
share this remarkable capability. [See Tschinkel & Howard (1978) for a discussion
of queen replacement in orphaned colonieS ofvicta]

CHARACTERISTICS OF INVADED HABITATS

Natural ecosystems vary greatly in the extent to which they are affected by invasive
ants. An ecosystem’s physical environment (Tremper 1976, Ward 1987, Holway
1998h, Holway et al. 2002) and its history of anthropogenic disturbance (Tschinkel
1988) and fragmentation (Suarez etal. 1998) all influence susceptibility to invasion.
Introduced populations of bo® invictaandS. geminatafor example, often favor

open and disturbed habitats (Tschinkel 1988, Morrison 1996, De Heer et al. 1999).
The extent to which biotic resistance from native ants influences the vulnerability
of communities to invasion appears to vary regionally. In riparian woodlands in
northern California, native ant richness and rate of spread of Argentine ants were
uncorrelated over a 4-year period (Holway 1998b). Majer (1994), Andersen (1997),
and Hoffmann et al. (1999), however, suggest thatihemyrmexrich fauna of
Australia may be resistant to invasion owing to the strong competitive ability of
antsin this genus (Andersen 1992, Andersen & Patel 1994). Moreover, the absence
of native ants on Hawaii and other islands in the Pacific Ocean undoubtedly makes
these areas vulnerable to invasion (Cole et al. 1992, Reimer 1994).

EFFECTS OF INVASIVE ANTS ON NATIVE ANTS

The competitive displacement of native ants by invasive ants is the most dramatic
and widely reported effect of ant invasionsalldiobler & Wilson 1990, Williams

1994). In invaded areas, the abundance of native ants can be reduced by over
90% [Porter & Savignano 1990 (but see Morrison 2002), Cammell et al. 1996,
Human & Gordon 1997, Holway 1998a, Hoffmann et al. 1999]. Evidence of this
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phenomenon comes from a variety of sourcash(storical accounts (Newell &
Barber 1913, Van Der Goot 1916, Haskins & Haskins 1965, Brandao & Paiva
1994), ) longitudinal studies documenting the advance of invasive ants at the
expense of natives (Greenslade 1971; Erickson 1971; Tremper 1976; Porter et al.
1988; Holway 1995, 1998b; Human & Gordon 1996; Hoffmann etal. 1999; Sanders
et al. 2001), €) studies documenting mutually exclusive distributions between
native ants and invasive ants (Tremper 1976; Clark et al. 1982; Ward 1987; Porter
& Savignano 1990; Morris & Steigman 1993; Cammell et al. 1996; Human &
Gordon 1997; Heterick 1997; Way et al. 1997; Holway 1998a,b; Suarez et al.
1998; Kennedy 1998; Hoffmann et al. 1999; Vanderwoude et al. 2080arge-

scale studies illustrating the effects of invasive ants on latitudinal gradients in
ant diversity (Gotelli & Arnett 2000), ande) lab and field studies (only some
experimental) demonstrating that invasive ants differ from native ants with respect
to competitive ability, periods of activity, behavioral characteristics, or resource
use (Clark et al. 1982; Jones & Phillips 1987, 1990; Porter & Savignano 1990;
Morrison 1996; Human & Gordon 1996, 1999; Holway 1999; Morrison 1999,
2000; Holway & Case 2001).

Invasive ants may have the greatest effect on ecologically similar native ants. In
the southeastern United States, for example, the fireSoienopsis xylorandS.
geminataappear highly sensitive to displacementyinvicta(Wilson & Brown
1958; Porter et al. 1988; Morrison 2000, 2002). Likewise, in California, Argen-
tine ants and ecologically similar native Dolichoderines (elgpinoma sessile
Liometopum occidentd)earely, if ever, coexist (Ward 1987, Holway 1998a). Na-
tive ants that resemble invasive ants in their ecologies are by no means the only ants
displaced. In California, for example, a variety of harvester ant species succumb
to Argentine ants (Erickson 1971, Human & Gordon 1996, Suarez et al. 1998)
despite little apparent overlap in food resourcsinvictahas also been reported
to eradicate colonies of the harvesterBogonomyrmex barbatuis central Texas
(Hook & Porter 1990).

Although invasive ants displace many species of native ants, some often persist.
Hypogeic ants, for example, may persevere in areas occupied by invasive ants
(Ward 1987) or persist longer than other taxa (Hoffmann et al. 1999). Tschinkel
(1988) speculated that predation by the hypo§eienopsis molestgponS. invicta
brood may restrict monogyne coloniesfinvictato disturbed habitats lackirtg.
molesta Species resistant to displacement also include those adapted to physical
conditions not tolerated by invaders. In California, the cold-toleRmenolepis
imparisappears relatively immune to displacement by the Argentine ant (Tremper
1976, Ward 1987, Holway 1998a, Suarez et al. 1998), whereas the heat-tolerant
Dorymyrmex insanuand Forelius mccookicoexist locally with Argentine ants
along the periphery of hot, exposed areas not colonized. byumile (Holway
et al. 2002). BothD. insanusand F. mccookico-occur withS. invictaas well
(Summerlin et al. 1977, Camilo & Philips 1990, Morrison 2002). Heat tolerant
native ants also appear to coexist with Argentine ants in South Africa (Witt &
Giliomee 1999).



190 HOLWAY ET AL.

Other native ants may resist displacement by invasive ants primarily because of
their strong competitive ability. In North America, for example, many authors have
reported that species in the geridsnomoriumcan, to some extent, withstand
interspecific competition by invasive ants. Several authors réflortomorium
minimumco-occurring with red imported fire ants in the southeastern United States
(Baroni-Urbani & Kannowski 1974, Howard & Oliver 1979, Stein & Thorvilosen
1989, Porter & Savignano 1990), aMd ergatogynawas the only native ant (of
seven species tested) to resist displacement by Argentine ants at baits in northern
California (Holway 1999)Monomoriumspecies may persist both through their
use of potent chemical defensive compounds (Adams & Traniello 1981, Andersen
et al. 1991) and their tolerance of warm temperatures (Adams & Traniello 1981).

Mechanisms

Although the ability of invasive ants to displace native ants is well known, the
mechanisms involved have, until recently, received relatively little attention. Even
with a number of recent and informative studies, much remains to be learned. For
example, native ants succumb to the combined effects of interference and exploita-
tive competition, but an understanding of the relative importance of these two forms
of competition is often unclear and undoubtedly varies depending on the invad-
ing species, characteristics of the native ant community, and other environmental
variables. Furthermore, invasive ants are unusual in that introduced populations
of most species typically maintain populous and expansive supercolonies. The
abundance of invasive ants can exceed that of all native ant species combined in
comparable uninvaded areas (Porter & Savignano 1990, Holway 1998a, Hoffmann
et al. 1999). Although disparities in colony size are an important determinant of
the competitive asymmetry between native and invasive ants, there exists only a
rudimentary understanding of why invasive ants differ from native species in this
important respect.

As with ants generally (Blfdobler & Wilson 1990), the interference repertoire
of invasive ants includes both worker-level behaviors such as physical aggression
and the use of chemical defensive compounds as well as colony-level behav-
iors such as recruitment of nestmates, interspecific territoriality, and nest raiding
(Table 2). Despite the pervasiveness of physical aggression among competing ants
as a whole, invasive ants are commonly described as exhibiting pronounced in-
terspecific aggression @Hdobler & Wilson 1977, 1990; Passera 1994; Human &
Gordon 1999). Even though invasive ants may be more aggressive than the native
ants they displace, differential aggression provides only a partial explanation for
their interference prowess. In ants generally, interference competition, especially
forvaluable food finds or nest sites, is typically a colony-level activity. The outcome
of such inter-colony contests depends primarily on asymmetries in recruitment re-
sponse or local density (often reflective of differences in colony sizaljdbbler &
Lumsden 1980, Hildobler & Wilson 1990, Adams 1990). Numerical advantages
enjoyed by invasive ants contribute greatly to their interference ability (Greenslade
1971, Tremper 1976, Holway 1999, Morrison 2000, Holway & Case 2001).
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TABLE 2 Competitive mechanisms and behaviors reported to be important in interactions

between invasive ants and native ants

Species Competitive mechanism or behavior Study
Anoplolepis Use of chemical defensive compounds Fluker & Beardsley 1970
gracilipes Use of physical aggression by workers Haines & Haines 1978a
Active both day and night Haines & Haines 1978a
Linepithema  Use of chemical defensive compounds Lieberburg et al. 1975, Holway 1999,
humile Holway & Case 2001
Use of physical aggression by workers Newell 1908, Erickson 1971,
De Kock 1990, Human & Gordon
1996, 1999, Holway 1999
Initiates one-on-one interactions more Human & Gordon 1999, Holway &
often than do native ants Case 2001
Raids nests of other species Fluker & Beardsley 1970, De Kock 1990,
D.A. Holway, unpublished observation,
P.S. Ward, unpublished observation
Workers prey upon winged queens of Human & Gordon 1996
native ant species
Remains at baits longer than do Human & Gordon 1996
native ants
Proficient at displacing native ants Human & Gordon 1996, Holway 1999
from baits
Active both day and night Human & Gordon 1996
Active throughout the year Holway 1998a
Recruits to baits in higher numbers Human & Gordon 1996, Holway 1998b
than do native ants
Recruits to more baits than do native ants  Holway 1998b
Discovers and recruits to baits more Holway 1998a, Holway 1999
quickly than do native ants
Adjusts foraging behavior to local Gordon 1995
worker density
Pheidole Use of physical aggression by workers Fluker & Beardsley 1970,
megacephala Lieberburg et al. 1975
Use of physical aggression by soldiers Fluker & Beardsley 1970
Recruitment of many workers Lieberburg et al. 1975
Active both day and night Hoffmann 1998
Solenopsis Use of chemical defensive compounds Bhatkar et al. 1972, Obin & Vander Meer
invicta (gaster flagging and stinging) 1985, King & Phillips 1992, Morrison 2000

Use of physical aggression by workers

Raids nests of other species

Retrieves baits in the lab more rapidly
than do 2 species of native ants

Discovers and recruits to baits more
quickly than do native ants

Recruits to baits in higher numbers
than do native ants

Recruits to baits in higher numbers
than does nativ8. geminata

Bhatkar et al. 1972, Jones & Phillips 1987,
Bhatkar 1988, King & Phillips 1992,
Morrison 1999, Morrison 2000

Bhatkar et al. 1972, Hook & Porter 1990

Jones & Phillips 1990

Porter & Savignano 1990

Porter & Savignano 1990

Morrison 1999

(Continued
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TABLE 2 (Continued

Species Competitive mechanism or behavior Study

Solenopsis Retrieves more food than does nativegeminata Morrison 1999
invicta

(continued)

Colony-level interference ability in the lab
superior to that of native fire antS(geminata
andS. geminatax S. xylonihybrids)

Active both day and night

Morrison 2000

Morrison 2000

Solenopsis Use of physical aggression by workers Morrison 1996
geminata Recruits to baits in higher numbers than do native ants Morrison 1996
Reduces the accessMbnomorium monomoriuro baits Morrison 1996
Most dominant interference competitor (out of 19 Torres 1984
species) at baits
Wasmannia Remains at baits longer than do other ants Clark et al. 1982
auropunctata Proficient at displacing other ants from baits Clark et al. 1982
Recruits to baits in higher numbers than do other ants Clark et al. 1982;
Tennant 1994
Active both day and night Clark et al. 1982
Pirates food from other ants Brandao & Paiva 1994

A poorly studied but potentially important component of the competitive dis-
placement of native ants by invasive ants involves colony-level battles and nestraid-
ing. Colonies of botl$. invictaandL. humileengage in aggressive, episodic raids on
nests of other species (Table 2). Although effects of colony-level battles remain dif-
ficult to quantify because individual events may occur only infrequently, such raids
may eradicate native ant colonies. Hook & Porter (1990), for example, estimated
that a colony ofP. barbatusin central Texas lost over 1200 workersSoinvicta
over a period of six to seven weeks; this colony was believed to die out eventually
as a direct result of these incursions. Although the distinction between interfer-
ence competition and intra-guild predation in such cases is not clear-cut, at present,
there is little evidence that invasive ants consume native ants during these events.
The role of nest raiding in this context should be investigated in greater detalil.

Invasive ants also compete with native ants indirectly via exploitative compe-
tition. As with interference ability, large colony size enhances exploitative ability
because large colonies can simultaneously maintain large forces of scouts (i.e.,
workers actively searching for food) and recruits (i.e., workers in the nest avail-
able to help exploit rich food discoveries) (Johnson et al. 1987). Compared to the
native ants they displace, invasive ants commonly excel at behaviors correlated
with exploitative ability: rapid discovery of food, rapid recruitment, recruitment
of large numbers of workers, extended duration of recruitment, and 24-hour activ-
ity (Table 2). Somewhat surprisingly, few field studies measure exploitative ability
directly (e.g., food retrieval rates) (Morrison 1999). Despite putative differences in
exploitative ability between native and invasive ants, the precise role of exploitative
competition in the demise of native ants remains unclear. Exploitative competition
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probably plays a minor role in situations where both invasive ants and native ants
maintain separate and well-delineated territories (Morrison 2000) and where large
or immobile food items (e.g., carrion, aggregations of Homoptera) need to be
usurped from or defended against other colonies. In contrast, exploitative com-
petition may be more important in situations where territories are actively being

carved out (e.g., at the leading edge of an invasion front) and where small, par-
ticulate food items can be retrieved without recruitment of nestmates (e.g., small,
dead insects).

Compared to the native species they supplant, invasive ants may excel at the
two forms of competition simultaneously, allowing them both to exploit and to
monopolize a majority of food resources. Coexistence among competing species
of ants within a community can result from species-specific differences in compe-
titive ability: An inverse relationship often exists between the ability of a species
to discover food and its ability to dominate resources behaviorally or numerically
(Wilson 1971, Fellers 1987, Banks & Williams 1989, Perfecto 1994, Morrison
1996; see Johnson 1981 and Nagamitsu & Inoue 1997 for a similar relationship
among Meliponine bees). Relative to native ants, however, invasive ants may excel
at both resource discovery and resource dominance, effectively breaking the trade-
off (Davidson 1998, Holway 1999, Feener 2000). For example, compared to
a northern California native ant community that was subject to the discovery-
dominance trade-offl.. humile discovered food in less time than did all na-
tive species and also displaced a majority (six out of seven species) from baits
(Holway 1999) suggesting that humilesecures a majority of food resources in
areas where it meets native ants. Although discovery-dominance trade-offs offer a
simplistic view of community structure in that they ignore mechanisms known to
affect coexistence (e.g., species-specific tolerances to the physical environment),
they provide a conceptual framework for testing alternative hypotheses concerning
the success of ant invasions (Davidson 1998, Adler 1999, Feener 2000). Moreover,
given that competitive trade-offs are frequently invoked to explain species coex-
istence, their usefulness as a tool to explain cases where species fail to coexist
(as in invasions) may well be general [see Tilman (1999) for a similar argument
pertaining to plant invasions]. Numerical advantages probably allow invasive ants
to achieve simultaneous proficiency at both resource dominance and resource dis-
covery (Holway 1999, Morrison 2000), providing a proximate mechanism for why
invasive ants break the dominance-discovery trade-off. A key unresolved question,
however, is why invasive ants become so much more abundant than the native ants
they displace.

Hypotheses to Explain the Abundance of Invasive Ants

Several hypotheses have been advanced to account for the disproportionate abun-
dance of invasive ants. First, as with other introduced species, invasive ants have
escaped competitors and natural enemies and may achieve larger colony sizes and
increased colony densities as a consequence (Buren 1983, Porter et al. 1997).
Second, because unicolonial ants do not defend territorial boundaries against
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conspecifics, they can allocate workers to tasks other than colony defense and
shunt resources to worker production that would otherwise be expended on fight-
ing neighboring colonies of the same speciesl(#bbler & Wilson 1977, Macom

& Porter 1996, Holway et al. 1998). The loss of intraspecific territoriality and the
formation of supercolonies may allow such species to monopolize resources and to
displace competitors; this would lead to further increases in local density (Macom
& Porter 1996). Third, invasive ants may consume resources, such as plant and
homopteran exudates that native ants either fail to exploit or do so less efficiently
compared to invasive ants. In this sense, invasive ants could function partly as
herbivores, as has been suggested for tropical arboreal ants that maintain densities
greatly in excess of what scavenging and predation alone could support (Tobin
1994, Davidson 1997). Access to carbohydrate-rich food resources such as plant
and homopteran exudates may allow invasive ants to fuel workers at a high tempo,
making possible the maintenance of high dynamic densities (ants/area/time), the
defense of absolute territories, and further monopolization of resources (Davidson
1997, 1998). Because these processes in all likelihood operate simultaneously
(Porter & Savignano 1990, Holway 1999, Morrison 2000), an outstanding chal-
lenge will be to uncover their relative importance. As a start, we review current
evidence bearing on this issue for the two best-known invasivelaritamileand

S. invicta

LINEPITHEMA HUMILE Early reports from the Argentine ant’s introduced range
described workers, queens, and brood moving freely among spatially separate
nests (Newell & Barber 1913), and more recent studies have shown that a single
large supercolony appears to occupy nearly the entire introduced rangeuofile

in California (Tsutsui etal. 2000, Tsutsui & Case 2001). Argentine ants also appear
unicolonial in every other part of their introduced range where this behavior has
been studied (Passera 1994, Way et al. 1997, Tsutsui et al. 2000, Krieger & Keller
2000, Giraud et al. 2002). In contrast, although native populatiohshafmileare

also polygynous and maintain multiple nests, high levels of intraspecific aggression
are commonly observed between nests over skdr®Q m) spatial scales (Tsutsui

et al. 2000, Tsutsui & Case 2001).

Despite gross differences in colony structure between the native and introduced
ranges, workers in both areas tend to display intraspecific aggression toward work-
ers from genetically different colonies (Tsutsui et al. 2000). This observation is
of interest for at least two reasons. First, it suggests that nestmate recognition
in Argentine ants has an underlying genetic basis, as in other ants (e.g., Stuart
1987; Carlin & Hlldobler 1986, 1987; Beye et al. 1998). Second, it provides
an explanation for the widespread absence of intraspecific aggression in intro-
duced populations of this species. Because introduced populations experienced a
loss of genetic diversity during their introduction and establishment (Tsutsui et al.
2000, 2001), they do not appear to have sufficient genetic variation to elicit fight-
ing between workers from different nests. Workers in the introduced range rarely
encounter genetically different individuals; as a result, intraspecific aggression
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seldom occurs, and almost all nests function in an apparently cooperative, uni-
colonial fashion.

The shift in colony organization between native and introduced populations of
Argentine ants helps explain their success as invaders. In lab experiments with
pairs of colonies that either did or did not exhibit intraspecific aggression, aggres-
sive pairs experienced higher mortality, lower foraging activity, and lower rates of
colony growth after 70 days (Holway et al. 1998). Moreover, in 60% of nonag-
gressive nest pairs, colonies fused, even though some of these pairings were com-
posed of colonies that were originally collected from locations up to 100 km apart
(Holway et al. 1998). Although caution seems warranted in extrapolating the re-
sults of this lab study to the population level, these findings show in principle
how the loss of intraspecific aggression could lead to increases in colony size
and the formation of supercolonies—both of which would enhance interspecific
competitive ability.

Other factors also contribute to the abundance of Argentine ants in their intro-
duced range. In its native Argentina, humilecoexists with many other species
of ants (Suarez et al. 1999), including competitive dominants su& awicta
andS. richteri It seems likely that the absence of strong competitors suh as
invicta and S. richterithroughout most of the Argentine ant’s introduced range
contributes to its high abundancg.invicta, for example, appears to have dis-
placedL. humilewhere introduced populations of both species overlapped in the
southeastern United States (Wilson 1951, Glancey et al. 1976). At present, there is
no evidence concerning the role of escape from natural enemies in the success of
introduced populations of Argentine antshumileappears to lack phorid fly par-
asitoids (Orr et al. 2001) despite earlier reports to the contrary (Orr & Seike 1998,
Feener 2000). Recent work suggests that previous studies of phorid fly parasitism
involved different species dfinepithemaOrr et al. 2001, Tsutsui et al. 2001).

An additional factor that may promote high worker densities in introduced
populations is the ability df. humileto exploit resources that native ants either fail
to consume or consume less efficiently than invasive ants. For example, Argentine
ants have a strong predilection for homopteran honeydew. When Argentine ants
tend Homoptera in agricultural systems (especially citrus orchards), protected
Homoptera can attain locally high densities, possibly further incredsihgmile
populations (Newell & Barber 1913, Way 1963). However, it remains unclear
whether Argentine ants differ from native ants in their preference for honeydew.
In riparian woodlands in northern California, for example, native ants such as
Liometopum occidentaleommonly tend Homoptera (Ward 1987).

SOLENOPSIS INVICTA  The monogyne form db. invictawas first introduced to the
United States around 1940 and spread quickly in the following decades through-
out the southeast, where it now attains higher densities than it does in its South
American native range (Porter et al. 1992). The success of this species has been
attributed to a variety of causes including human modifications of the landscape,
community simplifications resulting from prior invasions of other ants (¢.g.,
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humileandsS. richter), and the use of pesticides (Morrison 2000). Escape from
coevolved competitors, pathogens, and parasites probably also allowed increases
in the density of its populations (Jouvenaz 1990; Porter et al. 1992, 1997). For
example, the presence of host-specific parasitoids, such as phorid flies, can in-
hibit foraging inS. invictacolonies (Porter et al. 1995, Orr et al. 1995). Although

the population-level effects of phorids on fire ants are unknown at present, the
absence of phorids specialized $ninvictathroughout its introduced range may
allow colonies there to grow faster and to attain larger sizes.

In the 1970s, polygyne colonies &f invictawere first reported from the United
States (Glancey et al. 1973), and the polygyne form is now widespread (but discon-
tinuously distributed) in the southeast, particularly in Texas and Florida (Porter et
al. 1991, 1992). As in the United States, the distribution of polygynous colonies of
S.invictavaries in South America; polygyny is presentin Argentina (Jouvenaz et al.
1989, Ross et al. 1996) but apparently absent in Brazil (Jouvenaz et al. 1989, Porter
etal. 1992). Although the monogyne form®finvictas considered highly invasive
(Wilson & Brown 1958, Apperson & Powell 1984, Tschinkel 1993), the polygyne
form may be a bigger problem (Porter & Savignano 1990). In Florida, population
densities (estimated using biomass) of polygSniavictaare two times higher than
those of the monogyne form (Macom & Porter 1996). Likewise, in Texas, colonies
of the polygyne form can recruit up to twice as many workers to baits compared
to colonies of the monogyne form (MacKay et al. 1994). The higher densities of
the polygyne form, compared to the monogyne form, may result from diminished
intraspecific aggression and a concomitant reduction in intraspecific territoriality,
anincreased ability to monopolize resources from interspecific competitors, or dif-
ferences in patterns of sex allocation (Macom & Porter 1996). Because polygyne
and monogyne populations presently occur together in parts of the southeastern
United States, an interesting opportunity exists to test in more detail how colony
structure variation alone influences the ecological effects of these invasions.

The transition from monogyny to polygyny described above has been a topic of
much interest. Ross & Keller (1995) and Ross et al. (1996) have hypothesized that
polygyny became prevalent in introduced populations in response to ecological
constraints, as proposed for the evolution of cooperative breeding in other taxa
(Emlen 1982). Following introduction to the United States, population densities of
monogyneS. invictaincreased. With increasing colony densities, suitable nest sites
became saturated, reducing the fithess of queens that attempted to found colonies
independently and favoring queens seeking adoption into established colonies
(Nonacs 1993, Ross & Keller 1995). Frequent queen adoption may have then led to
an erosion of nestmate recognition abilities as levels of genetic diversity increased
within polygyne colonies (dlldobler & Michener 1980). This loss of nestmate
recognition could then have further increased polygyny as colonies accepted more
foreign queens (Blldobler & Wilson 1977, Ross et al. 1996), leading to a runaway
process of ever-increasing polygyny (Pamilo 1991, Ross et al. 1996).

In light of recent studies that illuminate the genetic machinery underlying
monogyny and polygyny i8. invicta(Keller & Ross 1999, Krieger & Ross 2002),
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itappears unlikely that polygyny arose in introduced populations as a result of eco-
logical constraints alone. These studies implicate genetic differences between the
social forms at th&p-9locus as the primary, and perhaps exclusive, determinant
of colony queen number i8. invicta Queens from the two social forms can be dis-
tinguished by their genotype at tiBp-9allozyme locus. Virtually all egg-laying
gueens in introduced polygyne colonies Bleheterozygotes &p-9(Ross 1997)

and possess a distinctive polygyne queen phenotype: physically small queens with
fewer fat reserves and more gradual oogenesis than monogyne queens (Keller &
Ross 1993). Workers in polygyne colonies accept additional queens based on their
genotype aGp-9(Keller & Ross 1998). Monogyne queens, on the other hand, are
heavy, possess the large fat reserves necessary for independent colony founding,
exhibit rapid oogenesis (Keller & Ross 1993), and posses8Bigenotype at
Gp-9in both the native and introduced ranges (Ross 1997). Workers in monogyne
colonies do not permit additional queens to join (Keller & Ross 1998). Othe
genotype is thought to be lethal, and is almost completely absent in adult workers
and queens in both ranges (Ross 1997).

Thus, the reproductive strategies of monogyne and polygyne queens appear to
be fixed by genetics, regardless of the ecological context. Previous work on the
infiltration of mature colonies by dispersing monogyne queens further supports
the idea that genetic factors limit queen numbeginnvictacolonies. In popula-
tions of monogynés. invicta for example, ecological constraints on independent
colony founding are so strong that some overwintered, monogyne queens attempt
to infiltrate previously established colonies (Tschinkel 1996, DeHeer & Tschinkel
1998). When these monogyne queens, which presumably possess the BB geno-
type atGp-9, attempt to enter colonies that contain queens, they are likely killed
by workers, (Tschinkel 1996, DeHeer & Tschinkel 1998, VanderMeer & Alonso
2002) as described above. Thus, it appears that these dispersing queens are only
able to successfully enter colonies that have lost their queen (DeHeer & Tschinkel
1998, VanderMeer & Alonso 2002). These studies illustrate that newly produced
gueens appear to be caught, on one hand, between ecological constraints that re-
duce opportunities for independent colony founding and, on the other hand, strong
genetic constraints that prevent monogyne queens from successfully entering es-
tablished colonies.

EFFECTS OF ANT INVASIONS ON OTHER TAXA

Although the displacement of native ants by invasive ants is the most obvious
effect of ant invasions, many additional effects occur following invasion. Given
the variety of ecological roles filled by native ants, it seems likely that reductions

in native ant diversity and abundance would indirectly affect many different taxa.
Moreover, because invasive ants are widespread, abundant, aggressive, and omniv-
orous, one would predict that they would disrupt invaded communities (Diamond

& Case 1986, Pimm 1991, Parker et al. 1999). These effects might be most no-
ticeable on island ecosystems that lack native ants. Numerous lines of empirical
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evidence support these predictions and illustrate the diversity of ecological effects
that result. Nonetheless, the effects of ant invasions remain incompletely stud-
ied, reflecting the inadequate state of knowledge concerning the consequences of
species introductions generally (Parker et al. 1999, Pimentel et al. 2000). Much
evidence bearing on the effects of ant invasions, for example, is either anecdotal or
correlative, and few studies determine if effects of invasive ants differ from those
of native ants that are displaced. Experimental, long-term and large-scale studies
are therefore needed to develop a more quantitative understanding of the impacts
caused by invasive ants. Below we discuss the known ecological effects of ant
invasions but recognize that current information on this topic is incomplete.

Competition and Predation

A clear understanding of the ecological role of invasive ants as predators and
competitors is hampered by a poor understanding of their diets, studies that confuse
predation and scavenging, and those that fail to distinguish between predation and
competition. Although many lines of evidence illustrate the role of invasive ants
as predators of at least certain taxa, the same cannot be said of competition. Some
evidence exists for ants generally competing with both vertebrates (Brown &
Davidson 1977, Aho et al. 1999) and non-ant invertebrates (Halaj et al. 1997),
but there is, at present, little unequivocal evidence demonstrating the existence
of competition (especially exploitative competition) between invasive ants and
non-ant taxa. For these reasons, we discuss predation and competition together.

IMPACTS OF INVASIVE ANTS ON INVERTEBRATES Every species of invasive ant
listed in Table 1 has been implicated in the decline of non-ant invertebrates, but the
effects ofL. humileandS. invictahave been examined in the most detail (Table 3).
Some of the best evidence illustrating the role of invasive ants as predators of
invertebrates comes from studies conducted in agricultural settings that document
invasive ants preying on insect herbivores (Table 3). As in agro-ecosystems, inva-
sive ants occupying less manipulated environments also prey opportunistically on
invertebrate eggs, larvae, and certain adult forms (Table 3). Such predation may
jeopardize populations of some invertebrates, especially those on oceanic islands,
such as Hawaii, which evolved in the absence of predaceous ants (Zimmerman
1970, Gillespie & Reimer 1993, Cole et al. 1992). Zimmerman (1970), for ex-
ample, recounts the disappearance (and apparent extinction) of a once abundant
wingless and ground-dwelling fly from forests on Oahu shortly after introduction

of P. megacephaldn addition to affecting other invertebrates through predation,
invasive ants may also compete with non-ant invertebrates.

Reported impacts of invasive ants on invertebrates range from qualitative ob-
servations, such as the absence of a species from an invaded area, to studies that
estimate changes in diversity, abundance, or biomass between invaded and unin-
vaded areas (Table 3olenopsis invictappears to cause declines in a variety of
invertebrate groups including ground-dwelling arthropods (Nichols & Sites 1989,
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Porter & Savignano 1990 [but see Morrison 2002]), canopy arthropods (Kaspari
2000), and decomposers (Vinson 1991, Summerlin et al. 1984a, Stoker et al. 1995,
Hu & Frank 1996). Argentine ants also affect other invertebrates negatively, but
studies report mixed results (Table 3), ranging from little apparentimpact (Holway
1998a) to declines in the abundance of two orders (Human & Gordon 1997), three
orders (Bolger et al. 2000), and eight orders (Cole et al. 1992).

Much of the evidence from which we draw conclusions about community-level
effects on invertebrates comes from studies that compare faunas of invaded areas
with those of comparable, uninvaded areas. If carefully designed and replicated,
such comparisons can yield insights into a wide variety of impacts associated with
antinvasions. This approach, however, has a number ofimportant limitations. First,
invaded and uninvaded sites may differ inherently with respect to environmental
variables such as soil moisture, soil type, elevation, disturbance history, distance
to edge, or the presence of other invaders. In such cases, the effects of invasive
ants can be difficult to tease apart from the effects of covarying environmental
variation (but see Bolger et al. 2000). Second, in community-level comparisons,
the effects of invasive ants on a single species may be hard to detect or to test for
statistically; this is especially true for rare species. Moreover, it is often difficult
to generalize about effects on a given taxon from one community to another. For
example, whereas some studies report negative effects of invasive ants on spiders
(Lubin 1978, Haines & Haines 1978b, Cole et al. 1992, Gillespie & Reimer 1993),
others either failed to detect significant effects (Porter & Savignano 1990, Human
& Gordon 1997, Holway 1998a) or found positive associations (Bolger etal. 2000).
Taken together, these results permit little insight into the kinds of interactions that
take place between spiders and invasive ants. It seems likely that certain spiders
(e.g., ground-dwelling species, Hawaiian endemics) are more affected by invasive
ants than others (e.g., web-building species, species that evolved with ants), but
even these generalizations are not well supported by data.

IMPACTS OF INVASIVE ANTS ON VERTEBRATES Considerable correlative and lim-

ited experimental evidence suggests that vertebrate populations may also decline
as a result of ant invasions. Putatively affected taxa (Table 3) include mammals
(Killion & Grant 1993, Ferris et al. 1998, Meek 2000, Laakkonen et al. 2001),
lizards (Donaldson et al. 1994, Feare 1999, Jourdan et al. 2001, Fisher et al. 2002),
and birds (Allen et al. 1995, Feare 1999). Decreases in vertebrate populations have
been attributed to most invasive ant species, inclutdingimile(Laakkonen et al.

2001, Fisher et al. 2002)Y. auropunctatdJourdan et al. 2001), ad gracilipes
(Feare 1999, Meek 2000), although most reports inv8lvimvicta(Wojcik et al.

2001).

Whereas a causal relationship between ant invasion and vertebrate population
decline is commonly suggested, the specific mechanisms responsible are often
obscure. Predation is frequently argued to be important; this is especially true for
studies orS. invicta But accounts are often limited to situations in which animals
cannot escape attack (Table 3). Small mammals in cages or traps, for example,
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are vulnerable to predation I8/ invicta(Masser & Grant 1986, Flickinger 1989)
(Table 3). Vertebrates also suffer nest predation by invasive@witsnopsis invicta

has been implicated in nest failure for atleast seven species of birds and nine species
of reptiles (Table 3). The impacts of other invasive ants on the nesting success of
vertebrates remain understudied, but bathgracilipesandL. humilemay cause

nest failure in some bird species (Table 3). In some cases, itis unclear if ants caused
nest failure or simply recruited to dead or dying nestlings. Moreover, it is often
uncertain whether invasive ants reduce nesting success more than native ants do
(Travis 1938, Chalcraft & Andrews 1999).

In addition to predation, invasive ants may affect vertebrates through other
means. High densities of invasive ants may reduce the suitability of nest sites
(Ridlehuber 1982) and alter behavioral patterns (Pedersen et al. 1996, Holtcamp
et al. 1997), possibly increasing susceptibility to predation (Mueller et al. 2001).
Changes in arthropod communities associated with ant invasions may also con-
tribute to declines of insectivorous vertebrates including loggerhead shrikes [Lymn
& Temple 1991 (but see Yosef & Lohrer 1995)], northern bobwhites (Allen et al.
1995), and horned lizards (Donaldson et al. 1994, Suarez et al. 2000).

The link between ant invasions and vertebrate declines is also supported by
limited experimental evidence. Research on least ®teiia antillarum(Lockley
1995), northern bobwhiteSolinus virginianugMueller et al. 1999), and colonial
waterbirds (Drees 1994) demonstrates that suppressiSnin¥ictacan enhance
nesting success between 27% (Lockley 1995) and 92% (Drees 1994). Similarly,
captures of northern pygmy mi&aiomys taylorincreased by over 50% after six
months of fire ant suppression (Killion et al. 1995). It should be noted, however, that
large-scale ant suppression using pesticides probably results in changes beyond
the reduction of invasive ants (Yosef & Lohrer 1995, Hill & Dent 1985). Pesticides
can negatively affect species directly through poisoning (Collins etal. 1974, Hill &
Dent 1985, Williams et al. 2001) and indirectly through the reduction of arthropod
prey (Lymn & Temple 1991).

To illustrate better the diversity of mechanisms by which invasive ants may
affect vertebrate populations, we describe in more detail two relatively well-studied
examples: the northern bobwhit€.(virginianug and the coastal horned lizard
(Phrynosoma coronatum

Northern bobwhites and red imported fire ants Several lines of evidence link
declining northern bobwhite populations in the southeastern United States to in-
vasion byS. invicta First, significant correlations exist between the timing of

fire ant infestation and drops in bobwhite density estimated from Christmas bird
counts in Texas (Allen et al. 1995) and in Florida and South Carolina (Allen et al.
2000). Second, exposure to red imported fire ants decreases the growth rates and
survival of chicks (Giuliano et al. 1996) and alters their time budgets, reducing
time available for sleeping and foraging (Pedersen et al. 1996). Lastly, suppres-
sion ofS. invictaleads to increases in both chick survival (Mueller et al. 1999) and
adult density (Allen et al. 1995). It should be noted, however, that native fire ants
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(S. geminatpalso decrease nesting success in northern bobwhites (Travis 1938).
The role ofS. invictain the decline of bobwhites has been debated in part for this
reason (Brennan 1993).

Coastal horned lizards and Argentine ants The invasion oL.. humileinto south-

ern California is also correlated with the decline of a vertebrate species, the coastal
horned lizard. This reptile has disappeared from up to 50% of its former range as
a result of habitat destruction and collection for the pet trade (Fisher et al. 2002).
However, portions of its remaining range, particularly in coastal California, may
be unsuitable owing to invasion by Argentine ants. Like offerynosomgPianka

& Parker 1975), the diet dP. coronatumconsists primarily of ants, particularly
large harvester species (e §lessorandPogonomyrmexhat can constitute over

50% of their prey (and>50% of prey mass) (Suarez et al. 2000). Like many
aboveground foraging ants, harvester ants are vulnerable to ant invasions (Hook
& Porter 1990; Human & Gordon 1996; Suarez et al. 1998, 2000). Moreover,
Argentine ants are unsuitable nutritional surrogates for native ants (Suarez & Case
2002). Hatchling horned lizards lose weight when raised on either Argentine ants
or arthropods typical of invaded communities, whereas hatchlings rais€desn
matogster californicaa common native ant, were able to maintain growth rates
comparable to those of wild lizards (Suarez & Case 2002). Horned lizards avoid
eating Argentine ants in the field, possibly because of their small size, noxious
chemical defenses, or aggressive mobbing behavior (Suarez et al. 2000). It is also
possible that Argentine ants can cause nest failure in horned lizards, although this
remains to be tested. As a consequence of these factors, horned lizards are ei-
ther absent from or occur at low densities in areas occupied by Argentine ants in
coastal southern California (Fisher et al. 2002). The effects of invasive ants may
extend to other horned lizard species as well. In Texas, the red imported fire ant has
been implicated in the decline of the Texas horned lizRtthynosoma cornutum
(Donaldson et al. 1994).

Effects on Mutualistic Interactions

Ants enter into a variety of mutualistic interactions with plants and other insects.
These interactions may be obligate or facultative, loose associations or species-
specific, and may not always be mutually positive. How these interactions change
in the context of antinvasions is a largely unexplored line of research teeming with
guestions of evolutionary, behavioral, and ecological significance. Much of what
is known comes from agricultural settings. The extent to which patterns observed
in agro-ecosystems occur in less manipulated settings remains to be documented
in detail.

HOMOPTERA The relationship between ants and honeydew-excreting Homoptera
including scale insects, mealybugs, aphids, and treehoppers, is well known (Way
1963, Buckley 1987, Blldobler & Wilson 1990). Among the benefits Homoptera
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derive are protection from natural enemies, removal of exudates that may other-
wise foul the immediate environment, increased feeding potential, and relocation
to more favorable parts of the host plant (Way 1963). In exchange, ants acquire
a reliable, defendable source of carbohydrate-rich food (Sudd 198iddler

& Wilson 1990). Whereas partnerships are often facultative and non-species spe-
cific (Way 1963), certain pairings may yield mutually higher benefits than others
(Greenslade 1972, Bristow 1984, Gaume et al. 1998).

Although there have been few direct comparisons among invasive and other
ants, the presence of invasive ants is frequently associated with local increases
in homopteran abundance, both in the introduced and native ranges (Table 3). It
should be noted, however, th&blenopsisnay be an exception to this general
pattern (Adams 1986, Tedders et al. 1990, Clarke & DeBarr 1996, Dutcher et al.
1999; but see Vinson & Scarborough 1989, Michaud & Browning 1999). In spite of
these numerous reports, itis often unclear why invasive ants are exceptional tenders
relative to native ants, and research examining the dynamics of these interactions
in nonagricultural settings is almost completely lacking. Ants with modified crops,
such ad.. humileandA. gracilipes can ingest relatively large quantities of liquid
food, allowing them to excel at collecting honeydew (Eisner 1957, Davidson 1998).
In addition, because tending ants can be a limiting resource for Homoptera (Sudd
1987, Cushman & Whitham 1991, Breton & Addicott 1992), the high abundance
achieved by invasive ants may remove this limitation and allow Homoptera to
thrive. Invasive ants may be especially effective at deterring natural enemies of
Homoptera (Table 3).

Why is sustaining high densities of Homoptera beneficial for ants? As discussed
above, access to carbohydrate-rich resources may be related to ecological domi-
nance in ant communities (Davidson 1997, 1998). Empirical evidence on this point
is scarce, correlative, and limited to agricultural settings but generally supports the
hypothesis. The presence of Homoptera appears necessary for the maintenance of
A. gracilipesin cocoa plantations in Papua New Guinea (Baker 1972). Likewise,
in cocoa in Ghana. megacephalachieves dominance only when the Homoptera
with which it is most closely associated are present (Campbell 1994). Similarly,
L. humiledoes not appear to become dominant in South African vineyards with
low levels of Homoptera (Addison & Samways 2000).

High densities of Homoptera associated with invasive ants may have repercus-
sions for the host plant. Since Homoptera feed on plant phloem, large aggregations
can lead to direct damage, fouling from mold, and higher susceptibility and expo-
sure to phytopathogens (Way 1963, Buckley 1987). Evidence is plentiful. The ants
listed in Table 1 have all variously been classified as pests because of their tending
ability (Table 3). Alternatively, the ant-Homoptera mutualism may be beneficial to
the host plantin cases where ants attack other herbivores (Messina 1981, Compton
& Robertson 1988). For example, in Portugal, aphids atirattumileto pines
where the ants in turn prey upon larvae of the pine processionary moth, a major
defoliator (Way et al. 1999). Three-cornered alfalfa nymphs at8ageminatdo
soybean plants where they remove 77% of soybean looper eggs; only 37% of eggs
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are removed from plants lacking nymphs (Nickerson et al. 1977). In addition, ants
benefit plants when they remove enough honeydew to prevent sooty mold (Bach
1991).

PLANTS Ant-plant mutualisms range from obligate interactions involving spe-
cialized domatia or food structures characteristic of true myrmecophytes to more
facultative, nonspecific interactions (Buckley 1982, Keeler 1988|ddbler &
Wilson 1990, Huxley & Cutler 1991). Not surprisingly, invasive ant-plant relation-
ships fall in the facultative, nonspecific end of the spectrum and include tending,
seed dispersal, and interactions in flowers. When native ants are displaced, invaders
may usurp their roles and alter the dynamics of the interaction, or they may fail
to replace natives functionally, in some cases disrupting relationships beneficial
to the plant (Lach 2002). Invasive ants may also interact with plants in ways that
native ants do not, to the potential detriment of the plant. Moreover, positive and
negative effects of the same ant on the same plant may counteract or combine;
such variability makes it difficult to generalize about the effects of invasive ants
on plants (Lach 2002).

Flowersand pollination Ifthe ability to capitalize on carbohydrate-rich resources
is important to becoming invasive, we might expect invasive ants to be attracted to
floral nectar. However, few studies have examined associations among invasive ants
and flowers. The acceptability of floral nectar to ants generally has been debated
(Janzen 1977, Baker & Baker 1978, Feinsinger & Swarm 1978), and while it is
clear that ants are repelled by the chemical or mechanical defenses of the flowers
of some species (Willmer & Stone 1997, Ghazoul 2000), they readily consume
nectar from the flowers of others (Haber et al. 1981, Koptur & Truong 1998).
Since ants are notoriously poor pollinators (Beattie et al. 19&fidelbler &
Wilson 1990, Peakall et al. 1991), ants that are able to use floral nectar may be
doing so at a cost to both the plant and legitimate pollinators. Data supporting these
hypotheses are scant, but Buys (1987) found that Argentine ants exploited 42% of
black ironbark nectar before honeybees began foraging, and Visser et al. (1996)
documented a decline in arthropod visitortotea nitidaflowers wheri.. humile
was present in high numbers. Argentine-ant associated declines in seed set have
been suspected (Potgieter 1937, Durr 1952), but unequivocal evidence is so far
lacking (Buys 1990). Alternatively, the presence of invasive ants in flowers may
enhance pollination, if it results in increased repositioning frequency of pollinators
(Lach 2002). Other invasive ants are also known to visit flowers, sometimes to the
observed detriment of the plant (Knight 1944, Adams 1986, Lofgren 1986, Hara
& Hata 1992, Hata et al. 1995). Detrimental effects on pollinators may also occur
through interactions away from the plant (e.g., Cole et al. 1992) (Table 3).

Extrafloral nectaries As with flowers and honeydew-excreting Homoptera, we
would expect that invasive ants exploit extrafloral nectaries (EFNs) as a carbohy-
drate-rich resource. EFNs are generally attractive to ants (Carroll & Janzen 1973),
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and a number of hypotheses exist to account for the association. Plants with
EFNs may attract ants in order to deter herbivores (Bentley 1977, Buckley 1982) or
to distract ants from potentially detrimental activities such as tending Homoptera
(Becerra & Venable 1989) or visiting flowers (Zachariades & Midgley 1999).

The paucity of research on invasive ant-EFN interactions precludes concluding
whether invasive ants are more or less likely than native ants to be attracted to
EFNs and to fulfill any of the roles played by native ants. There are scattered
reports of invasive ants, both in their native and introduced ranges, visiting EFNs
(Meier 1994), and a few of these studies measure the effects of the ants on the
plant (Koptur 1979, Agnew et al. 1982, de la Fuente & Marquis 1999, Fleet &
Young 2000) compared to other ants (Horvitz & Schemske 1984, Freitas et al.
2000, Hoffmann et al. 1999, Ness 2001). Although EFNs attract ants generally,
the invasive ant-plant interaction may differ from the native ant-plant interaction
if the invaders and native ants diverge in their nutritional preferences, periods
of activity, foraging behavior, interactions with herbivores, or abundance (Lach
2002). For exampleS. invictavisits Catalpa bignonioide€FNs less frequently
than native ants because of differences in seasonal diet preferences; however, it is
exceptionally intolerant of herbivores, so plant protection is not diminished (Ness
2001).

Seed dispersal Seed dispersal by ants, or myrmecochory, is another type of mu-
tualism between ants and plants. Ants transport seeds away from a parent plant,
often in exchange for an elaiosome, a lipid-rich attachment to the seed (Buckley
1982, Beattie 1985). The few studies to date suggest that invasive ants may be
poor seed dispersers relative to at least some ants they displace. In South Africa,
Argentine ants displace most native ants that are effective seed dispersers, but they
fail to disperse or to bury seeds, instead eating the elaiosome and leaving the seed
aboveground where it is susceptible to rodent predation and fire (Bond & Slingsby
1984). Some of the smaller native ants are able to coexistiwtiimileand con-

tinue dispersing small seeds, but displacement of the larger native ants may lead
to declines in large-seeded plant species (Christian 2001). Similarly, in Cdrsica,
humileappears less effective th&phaenogaster spinosa dominant native ant,

at dispersing the seeds of a rare endemic plant, but the consequences for the plant’s
population dynamics are unclear (Quilichini & Debussche 2000). Other invasive
ants also may affect seed dispersal. Red imported fire ants, for example, collect the
seeds of eliaosome-bearing herbaceous plants in South Carolina and leave them
scarified and exposed on their trash piles (Zettler etal. 2001). In AusiPatieega-
cephalaoutcompetes native ants on some rehabilitated sand mines where it takes
seeds of the elaiosome bearifigacia concurrengMajer 1985). Whereas bot.
geminataandW. auropunctatanterfere with seed dispersal of a myrmecochorous
herb within their presumed native range in Mexico (Horvitz & Schemske 1986),
any effect on seed dispersal in their introduced ranges is undocumented. Addi-
tional experimental studies will clarify the extent to which invasive ants affect plant
communities through the disruption of ant-mediated seed dispersal. Experiments
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that control for the effects of invasive ants on plant vigor and reproduction (e.g.,
pollination) and other confounding variables will be particularly valuable.

OTHER MUTUALISMS Holldobler & Wilson (1990) review symbiotic relationships
between ants and other arthropods, a small subset of which can be considered
mutualistic. Clearly, those species involved in obligate and species-specific rela-
tionships with native ant species that are vulnerable to displacement by invasive
ants may themselves succumb to local extinction following invasion. Despite this
concern, little research has been published on how ant invasions affect the ecology
of myrmecophilic arthropods. Argentine ants, for example, may imperil lycaenid
butterflies in South Africa because they displace the native ants that tend them,
but probably do not fulfill their tending roles (A. Heath, unpublished observation).
Wheread\. gracilipegparticipates in mutualistic relationships with a coprophagous
reduviid bug in India (Ambrose & Livingstone 1979) and two species of coreid
bugs on Malaysian bamboo (Maschwitz et al. 1987), and tends larvae of a lycaenid
butterfly in Sulawesi (Kitching 1987), the origins of this ant are disputed, and it is
unclear whether these constitute new associations or coevolved relationships.

Other Ant-Plant Interactions

DIRECT IMPACTS ON PLANTS Direct effects of ants on plants include soil excava-
tion around root systems, herbivory, and seed predation. Fire ants, for example,
damage plants (Taber 2000) and frequently incorporate plant materials in their diet
(Risch & Carroll 1986, Trabanino et al. 1989, Tennant & Porter 1991). In India,
S. geminatattacks cucumber, tomato, cotton, and potato crops (Lakshmikantha
et al. 1996).Solenopsis invictalso damages seeds, seedlings, and root systems
of a variety of agricultural crops (Adams 1986, Banks et al. 1991, Drees et al.
1991, Vinson 1997, Shatters & Vander Meer 2000). Effects are likely not limited
to agricultural systems; only 18 of 96 crop and noncrop seed species tested with
S. invictacolonies in a laboratory experiment were resistant to damage (Ready
& Vinson 1995). It is important to note, however, that in the southeastern United
StatessS. invictacommonly displaceS. geminataa species that exhibits an even
greater preference for seeds (Tennant & Porter 1991). Therefore, the impacts of
S. invictaas a seed predator (e.g., Zettler et al. 2001) must be considered in the
context of declining populations &. geminataAlthough most reports of inva-

sive ants damaging plants focus on fire aAtgyracilipesundermines the roots of
several agricultural plants (Haines & Haines 1978b, Veeresh 1990),.dmuohile
damages figs and orange blossoms (Newell & Barber 1913) and spreads avocado
stem canker (El Hamalawi & Menge 1996). Because of their high abundance, in-
vasive ants may damage plants to a greater extent than do native ant species, but
few direct comparisons exist.

EFFECTS ON HERBIVORES AND HERBIVORE ENEMIES As discussed above, invasive
ants prey upon a wide variety of invertebrates including herbivores that are
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important plant pests. Supportive evidence includes direct observations, correla-
tions in abundance between ants and herbivores, and controlled cage experiments
(Table 3). As yet, there is no evidence for a hierarchy of prey desirable or ac-
ceptable to predaceous ants (Way & Khoo 1992). As for studies examining the
predatory habits of invasive ants generally, the majority of studies on herbivore
predation focus of$. invictg which preys upon or drives off numerous species of
insect herbivores, sometimes to the benefit of the plant, in a diversity of agricultural
systems (Table 3; reviewed in Taber 2000). Similarly, populatiords gfacilipes

in cacao (Baker 1972, Room & Smith 1975) and planted hoop pine (Wylie 1974),
andW. auropunctatan cacao in West Africa (Entwistle 1972) are encouraged for
their detrimental effects on economically important herbivores.

The predatory habits of invasive ants may also harm beneficial insects, result-
ing in negative impacts for the plants on which the interactions occur. In Zanzibar,
for example, neitheA. gracilipesnor P. megacephalaffects the coconut bug,
Pseudotheraptus wayiut both species displace the native weaver@atophylla
longinoda an effective predator of this pest (Way 1953, Zerhusen & Rashid 1992).
Pheidole megacephalalso displaces beneficial ants from coconut palms in the
Solomon Islands but fails to fulfill their roles as predators of the coconutAmg,
blypelta cocophagéGreenslade 1971). In Malaysia and Indone8iagracilipes
eliminates the native ant®gcophylla smaragdinand Dolichoderusspp.) that
protect cacao against miridelopeltisspp., but it in turn fails to prey on these
pests (Way & Khoo 1989). Invasive ants may also prey on or otherwise displace
non-ant enemies of herbivores (Table 3).

Other Effects

OBLIGATE ASSOCIATES AND VISUAL MIMICS Ants generally support a rich fauna

of associates, many of which are other insectittbler & Wilson 1990). Some of
these taxa form obligate, species-specific associations with ants; examples include
mymecophilic beetles as well as dipteran and hymenopteran parasitoids. Although
little studied from the perspective of ant invasions, such taxa would seem highly
vulnerable, especially because many obligate associates of ants are rare and local
to begin with (Hilldobler & Wilson 1990). For examples. geminatasupports
species-specific phorid fly parasitoids (Morrison et al. 1999) that almost certainly
decline in abundance as their host is displace® hipvictathroughout the south-
eastern United States. Arthropods (mostly insects and spiders) are also visual
mimics of ants. Through their superficial resemblance to ants, some of these mim-
ics must enjoy safety from predators uninterested in ants as prey. To the extent
that native ants serve as models to support the existence of such mimicry, visual
mimics also seem in jeopardy from ant invasions.

SOIL CHEMISTRY, TURNOVER AND EROSION Because the nesting activities of ants
turn over large quantities of soil and alter its chemistry and physical structure
(Holldobler & Wilson 1990, Jolivet 1996, Folgarait 1998), the replacement of
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native ants by invasive ants might generate ecosystem-level effects. Such changes
might be especially important in situations where the nesting behaviors of native
and invasive ants differ greatly. For example, in coastal California, Argentine
ants displacéMessorand Pogonomyrmekarvester ants (Erickson 1971, Human

& Gordon 1996, Suarez et al. 1998). These harvester ants construct deep, long-
lived nests in which seeds are cached and refuse (rich in organic matter and often
including uneaten seeds) is discarded in a midden surrounding the nest entrance
(MacMahon et al. 2000). Argentine ants, in contrast, typically occupy short-lived
nest sites and usually fail to penetrate very deeply underground. It thus seems likely
that the replacement of harvester ants by Argentine ants alters soil characteristics.
The importance of such effects is unknown but deserves further scrutiny.

SYNERGISTIC EFFECTS In some circumstances, the success of invasive ants may
be facilitated by other invaders. Such mutually positive interactions may be a com-
mon feature of invasions (Simberloff & Von Holle 1999), but their frequency and
importance with respect to ant invasions are not well known. Such interactions
probably do occur in this context and deserve closer scrutiny. In Australia, for ex-
ample,P. megacephaltends an EFN-bearing weed and may encourage its spread
by deterring herbivores; the ant presumably benefits as well through the acquisi-
tion of food resources (Hoffmann et al. 1999). See Koptur (1979) for a similar ex-
ample involing.. humileand a weedy vetch in California. The evidence linking ant
dominance to availability of carbohydrate-rich resources suggests that honeydew-
producing Homoptera too might facilitate the spread of invasive ants and vice
versa. Bach (1991) describes such an interaction betRemegacephala non-

native homopteran, and an introduced plant in Hawaii. Although not interpreted
in terms of the spread of these non-native organisms, Bach’s study illustrates that
complexes of non-native species could invade in concert.

DIRECTIONS FOR FUTURE RESEARCH

In this review, we have attempted to synthesize a wealth of published information
concerning the causes and consequences of ant invasions. Whereas many recen
studies have enhanced a general understanding of these invasions, at the same
time, they point to large gaps in knowledge. Given the focut.dmmileandsS.

invicta, there is an obvious need for research on additional species of currently or
potentially invasive ants, especially those invading tropical environments. Below,
we outline what we consider to be other key research needs.

Comparisons of Native and Introduced Populations

It is remarkable that almost all of what is known about the biology of invasive
ants comes from studies of introduced populations. Although the same could be
said of other invasive species (Steneck & Carlton 2001), this bias seems espe-
cially prominent for invasive ants. For example, accurate information about the
location and boundaries of native ranges for most of the species listed in Table 1
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either remains incomplete or is lacking all together. Two recent studies (Ross et al.
1996, Tsutsui et al. 2000) demonstrate the extent to which introduced populations
can differ from native populations and in doing so make it clear that native pop-
ulations should serve as an essential benchmark for any evolutionary inference.
Given the likelihood of differences between native and introduced populations,
between-range comparisons have great potential to add to what is known about ant
invasions. Such comparisons will aid in the identification of geographic origins
(Ross & Trager 1990, Tsutsui et al. 2001), clarify poorly resolved taxonomic and
phylogenetic relationships, and elucidate the forces responsible for transitions in
social organization (Ross et al. 1996, Tsutsui et al. 2000). Comparisons of native
and introduced populations of invasive ants may also shed light on the relative
importance of competitive release from native ants (Buren 1983), escape from
natural enemies (Porter et al. 1997), and shifts in colony organization (Holway
et al. 1998, Tsutsui et al. 2000) as factors influencing invasion success.

More Experimental, Large-Scale and Long-Term Studies

As is true for invasion biology generally, ecological research on invasive ants has
largely been correlative or observational. A more comprehensive understanding
of the causes and consequences of ant invasions will be achieved only through
the implementation of manipulative experiments and studies conducted at larger
spatial or temporal scales.

The value of manipulative field experiments in invasion biology is constrained
somewhat by ethical concerns associated with introducing known invaders into new
areas as an experimental treatment, but experiments nonetheless hold promise as
a means to clarify both the causes and the consequences of ant invasions. Both
short-term removals (Morrison 1996, Holway 1999) and short-term introductions
(Bhatkar et al. 1972; Roubik 1978, 1980; Schaffer etal. 1983; Torres 1984; Human
& Gordon 1996, 1999; Holway 1999) allow the study of behavioral interactions
between native and introduced species of social insects. Although longer-term in-
troduction experiments are often ethically untenable, a greater number of long-term
removals (or partial removals), especially ones conducted at the leading edge of
invasion fronts, should be attempted. Examples include studies that use pesticides
to lower the density of red imported fire ants (Howard & Oliver 1978, Sterling
etal. 1979, Allen et al. 1995, Adams & Tschinkel 2001). Although the confound-
ing effects of pesticide treatment need to be carefully considered, experiments that
lower the density of invasive ants can be highly informative.

Increasing the spatio-temporal scale of invasive ant research is also important.
Some of the most dramatic examples of the impacts associated with ant invasions
come from long-term (Erickson 1971, Greenslade 1971) or large-scale (Gotelli &
Arnett 2000) studies. Long-term studies are an especially powerful means by which
to study the ecological effects of ant invasions, as they allow explicit before-and-
after comparisons of the same physical areas. A recent study by Morrison (2002)
exemplifies this approach and illustrates how the ecological effects of ant invasions
can vary greatly through time. Although few examples exist, studies conducted
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across large spatial scales can clarify the determinants of geographic variation in
invasion success, the factors governing range limits, and the extent to which the
effects of ant invasions exhibit scale dependency.

Better Estimates of Density and Biomass

A comprehensive understanding of the ecological effects of ant invasions is also
hindered by a lack of quantitative comparisons of the density and biomass of inva-
sive and native ants. Such comparisons are needed to gauge the impacts associate
with ant invasions but are also of more general interest in that they provide infor-
mation on how the density and biomass of an important group of consumers are
related to diversity.

The red imported fire ant is perhaps unique among invasive ants in that colony
density and biomass can be estimated from mound number and mound volume,
respectively (Tschinkel 1992, Porter et al. 1992). Interesting and informative com-
parisons of density and biomass thus exist for native and introduced populations
(Porter et al. 1992, 1997) and areas occupied by the two social forms in the in-
troduced range (Macom & Porter 1996). It is also possible to relate measures of
colony size and biomass B. invictato territory area (Tschinkel et al. 1995).

Less progress has been made in trying to measure the density or biomass of
other invasive ants or to compare such measures with those of native ants. Such
comparisons are difficult to make in part because, urikimvicta other invasive
ants maintain diffuse supercolonies composed of ephemeral and poorly defined
nests that may differ greatly from one another in size.

Prevention and Control

As information accumulates concerning the ecology of invasive ants, a framework
for identifying potential invaders will hopefully be constructed from common
features and knowledge of mechanisms. In the interim, a “guilty until proven
innocent” policy (Ruesink et al. 1995) seems warranted given the great difficulty
involved in eradicating established populations and the numerous problems that
can result from successful invasion. Although ants have been advocated as agents
of biological control in agricultural settings and may in fact be useful in such
circumstances (Way & Khoo 1992), introducing any ant species into a new location
seems unwise.

As with invasions of other organisms, identifying new infestations of inva-
sive ants as rapidly as possible must greatly increase opportunities for eradica-
tion. Established populations present difficult challenges in that eradication over
large areas is unfeasible and even local management, at present, remains difficult
(Davidson & Stone 1989, Williams et al. 2001). Nonetheless, the development
of integrated pest management strategies that incorporate both time-honored ap-
proaches and innovative ideas should remain an important goal. For example,
if unicolonial-like colony structures are an important determinant of the high
densities of some invasive ants, then tactics that lead to the dissolution of
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supercolonies through increased intraspecific aggression could be profitable lines
of attack (Suarez et al. 1999). Such strategies, while not resulting in eradica-
tion, could be used in concert with more traditional approaches to decrease both
the magnitude and variety of negative ecological effects associated with these
invasions.
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